[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Informed Asymptotically Near-Optimal Planning for Field Robots with Dynamics

  • Conference paper
  • First Online:
Field and Service Robotics

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 5))

Abstract

Recent progress in sampling-based planning has provided performance guarantees in terms of optimizing trajectory cost even in the presence of significant dynamics. The STABLE_SPARSE_RRT (SST) algorithm has these desirable path quality properties and achieves computational efficiency by maintaining a sparse set of state-space samples. The current paper focuses on field robotics, where workspace information can be used to effectively guide the search process of a planner. In particular, the computational performance of SST is improved by utilizing appropriate heuristics. The workspace information guides the exploration process of the planner and focuses it on the useful subset of the state space. The resulting Informed- SST is evaluated in scenarios involving either ground vehicles or quadrotors. This includes testing for a physically-simulated vehicle over uneven terrain, which is a computationally expensive planning problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ai-Omari, M.A.R., Jaradat, M.A., Jarrah, M.: Integrated simulation platform for indoor quadrotor applications. In: 2013 9th International Symposium on Mechatronics and its Applications (ISMA) (2013)

    Google Scholar 

  2. Bekris, K., Kavraki, L.: Informed and probabilistically complete search for motion planning under differential constraints. In: First International Symposium on Search Techniques in Artificial Intelligence and Robotics (STAIR), Chicago, IL (2008)

    Google Scholar 

  3. Choudhury, S., Gammell, J.D., Barfoot, T.D., Srinivasa, S.S., Scherer, S.: Regionally accelerated batch informed trees (rabit*): A framework to integrate local information into optimal path planning. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4207–4214. IEEE (2016)

    Google Scholar 

  4. Clement, L., Kelly, J., Barfoot, T.D.: Monocular visual teach and repeat aided by local ground planarity. In: Field and Service Robotics, pp. 547–561. Springer (2016)

    Google Scholar 

  5. Cohen, B.J., Chitta, S., Likhachev, M.: Search-based planning for manipulation with motion primitives. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 2902–2908. IEEE (2010)

    Google Scholar 

  6. Coumans, E.: Bullet Physics Engine. http://bulletphysics.org (2012)

  7. Diankov, R., Kuffner, J.: Randomized statistical path planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp. 1–6. IEEE (2007)

    Google Scholar 

  8. Fang, Z., Yang, S., Jain, S., Dubey, G., Roth, S., Maeta, S., Nuske, S., Zhang, Y., Scherer, S.: Robust autonomous flight in constrained and visually degraded shipboard environments. J. Field Robot. 34(1), 25–52 (2017)

    Article  Google Scholar 

  9. Ferguson, D., Howard, T.M., Likhachev, M.: Motion planning in urban environments: Part II. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. IROS 2008, pp. 1070–1076. IEEE (2008)

    Google Scholar 

  10. Ferguson, D., Stentz, A.: Using interpolation to improve path planning: the field d* algorithm. J. Field Robot. 23(2), 79–101 (2006)

    Article  MATH  Google Scholar 

  11. Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Informed rrt*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. arXiv:1404.2334 (2014)

  12. Hollinger, G.A., Sukhatme, G.S.: Sampling-based robotic information gathering algorithms. Int. J. Robot. Res. 33(9), 1271–1287 (2014)

    Article  Google Scholar 

  13. Inotsume, H., Creager, C., Wettergreen, D., Whittaker, W.R.L.: Finding routes for efficient and successful slope ascent for exploration rovers. In: The International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS) 2016 (2016)

    Google Scholar 

  14. Islam, F., Narayanan, V., Likhachev, M.: Dynamic multi-heuristic A. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2376–2382. IEEE (2015)

    Google Scholar 

  15. Kalisiak, M., van de Panne, M.: RRT-blossom: RRT with a local flood-fill behavior. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 1237–1242. IEEE (2006)

    Google Scholar 

  16. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  MATH  Google Scholar 

  17. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  18. Kunz, T., Stilman, M.: Kinodynamic RRTs with fixed time step and best-input extension are not probabilistically complete. In: Algorithmic Foundations of Robotics XI, pp. 233–244. Springer (2015)

    Google Scholar 

  19. LaValle, S., Kuffner, J.: Randomized kinodynamic planning. IJRR 20(5), 378–400 (2001)

    Google Scholar 

  20. Li, Y., Littlefield, Z., Bekris, K.E.: Sparse methods for efficient asymptotically optimal kinodynamic planning. In: Workshop on Algorithmic Foundations of Robotics (WAFR) (2014)

    Google Scholar 

  21. Li, Y., Littlefield, Z., Bekris, K.E.: Asymptotically optimal sampling-based kinodynamic planning. Int. J. Robot. Res. 35(5), 528–564 (2016)

    Article  Google Scholar 

  22. Likhachev, M., Ferguson, D.: Planning long dynamically-feasible maneuvers for autonomous vehicles. Int. J. Robot. Res. (IJRR) 28, 933–945 (2009)

    Article  Google Scholar 

  23. Likhachev, M., Stentz, A.: R* search. In: Proceedings of the National Conference on Artificial Intelligence (AAAI). Citeseer (2008)

    Google Scholar 

  24. Littlefield, Z., Klimenko, D., Kurniawati, H., Bekris, K.E.: The importance of a suitable distance function in belief-space planning. In: International Symposium on Robotic Research (ISRR) (2015)

    Google Scholar 

  25. Nash, A., Daniel, K., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. In: AAAI, pp. 1177–1183 (2007)

    Google Scholar 

  26. Pereira, A.A., Binney, J., Hollinger, G.A., Sukhatme, G.S.: Risk-aware path planning for autonomous underwater vehicles using predictive ocean models. J. Field Robot. 30(5), 741–762 (2013)

    Article  Google Scholar 

  27. Persson, S.M., Sharf, I.: Sampling-based A* algorithm for robot path-planning. Int. J. Robot. Res. 33(13), 1683–1708 (2014)

    Article  Google Scholar 

  28. Pivtoraiko, M., Kelly, A.: Kinodynamic motion planning with state lattice motion primitives. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2172–2179. IEEE (2011)

    Google Scholar 

  29. Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot motion planning in state lattices. J. Field Robot. 26(3), 308–333 (2009)

    Article  Google Scholar 

  30. Posa, M., Kuindersma, S., Tedrake, R.: Optimization and stabilization of trajectories for constrained dynamical systems. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1366–1373. IEEE (2016)

    Google Scholar 

  31. Wells, A., Plaku, E.: Adaptive sampling-based motion planning for mobile robots with differential constraints. In: Conference Towards Autonomous Robotic Systems, pp. 283–295. Springer (2015)

    Google Scholar 

  32. Ziegler, J., Stiller, C.: Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 1879–1884. IEEE (2009)

    Google Scholar 

  33. Zucker, M., Ratliff, N., Dragan, A.D., Pivtoraiko, M., Klingensmith, M., Dellin, C.M., Bagnell, J.A., Srinivasa, S.S.: CHOMP: covariant Hamiltonian optimization for motion planning. Int. J. Robot. Res. 32(9–10), 1164–1193 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas E. Bekris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Littlefield, Z., Bekris, K.E. (2018). Informed Asymptotically Near-Optimal Planning for Field Robots with Dynamics. In: Hutter, M., Siegwart, R. (eds) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-67361-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67361-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67360-8

  • Online ISBN: 978-3-319-67361-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics