[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Real-Time Prediction of Unemployment and Profession

  • Conference paper
  • First Online:
Social Informatics (SocInfo 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10540))

Included in the following conference series:

Abstract

At a societal level unemployment is an important indicator of the performance of an economy and risks in financial markets. This study provides the first confirmation that individual employment status can be predicted from standard mobile phone network logs externally validated with household survey data. Individual welfare and households’ vulnerability to shocks are intimately connected to employment status and professions of household breadwinners. By deriving a broad set of novel mobile phone network indicators reflecting users’ financial, social and mobility patterns we show how machine learning models can be used to predict 18 categories of profession in a South-Asian developing country. The model predicts individual unemployment status with 70.4% accuracy. We further show how unemployment can be aggregated from individual level and mapped geographically at cell tower resolution, providing a promising approach to map labor market economic indicators, and the distribution of economic productivity and vulnerability between censuses, especially in heterogeneous urban areas. The method also provides a promising approach to support data collection on vulnerable populations, which are frequently under-represented in official surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Lovati, J.: The unemployment rate as an economic indicator. Federal reserve bank of st.louis (1976)

    Google Scholar 

  2. Keynes, M.: The General Theory of Employment, Interest and Money. Palgrave Macmillan, Basingstoke, Hampshire (2009). ISBN 0-230-00476-8

    Google Scholar 

  3. International Labour Organization: Global Unemployment Trends. (2013)

    Google Scholar 

  4. Garegnani, P.: Heterogeneous capital, the production function and the theory of distribution. Rev. Econ. Stud. 37(3), 407–436 (1970)

    Article  Google Scholar 

  5. Faberman, D., Haltiwanger, J.: The flow approach to labor markets: new data sources and micro-macro links. J. Econ. Perspect. 20(3), 3–26 (2006)

    Article  Google Scholar 

  6. U.S. Bureau of Labor Statistics: How the Government Measures Unemployment. (2014)

    Google Scholar 

  7. International Labour Organization: World Employment Social Outlook. (2017)

    Google Scholar 

  8. Economy Watch: Unemployment and Poverty (2010). http://www.economywatch.com/unemployment/poverty.html

  9. Einav, L., Levin, J.: Economics in the age of big data. Science 346(6210) (2014). DOI:10.1126/science.1243089

  10. Lokanathan, S. Gunaratne, R.L.: Behavioral insights for development from Mobile Network Big Data: enlightening policy makers on the State of the Art (2014). http://dx.doi.org/10.2139/ssrn.2522814

  11. Sundsøy, P.: Big Data for Social Sciences: Measuring patterns of human behavior through large-scale mobile phone data. PHD Thesis, arXiv:1702.08349 [cs.CY] (2017)

  12. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N.: Computational social science. Science 323(5915), 721–723 (2009)

    Article  Google Scholar 

  13. Blumenstock, C.: Predicting poverty and wealth from mobile phone metadata. Science 350(6264), 1073–1076 (2015)

    Article  Google Scholar 

  14. Steele, J. E., Sundsøy, P., Pezzulo, C., Alegana, V., Bird, T., Blumenstock, J., Bjelland, J., Engø-Monsen, K., de Montjoye, Y. A., Iqbal, A., Hadiuzzaman, K., Lu, X., Wetter, E., Tatem, A., Bengtsson, L.: Mapping poverty using mobile phone and satellite data. J. R. Soc. Interface 14(127), (2017). 20160690

    Google Scholar 

  15. Sundsøy, P.: Mitigating the risks of financial exclusion: Predicting illiteracy with standard mobile phone logs. In: SBP-BRiMS 2017 International Conference on Social Computing, Behavioral-Cultural Modeling & Prediction and Behavior Representation in Modeling and Simulation (2017)

    Google Scholar 

  16. Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F.R., Gaughan, A.E., Blondel, V.D., Tatem, A.J.: Dynamic population mapping using mobile phone data. In: PNAS, pp. 15888–15893 (2014). doi:10.1073/pnas.1408439111

  17. Lu, X., Wrathall, D.J., Sundsøy, P.R., Nadiruzzaman, M., Wetter, E., Iqbal, A., Qureshi, T., Tatem, A.J., Canright, G.S., Engø-Monsen, K., Bengtsson, L.: Detecting climate adaptation with mobile network data in Bangladesh: anomalies in communication, mobility and consumption patterns during cyclone Mahasen. Clim. Change 138(3), 505–519 (2016)

    Article  Google Scholar 

  18. Lu, X., Wrathall, D.J., Sundsøy, P.R., Nadiruzzaman, M., Wetter, E., Iqbal, A., Qureshi, T., Tatem, A.J., Canright, G.S., Engø-Monsen, K., Bengtsson, L.: Unveiling hidden migration and mobility patterns in climate stressed regions: A longitudinal study of six million anonymous mobile phone users in Bangladesh. Glob. Environ. Change 38, 1–7 (2016)

    Article  Google Scholar 

  19. Wesolowski, A., Qureshi, T., Boni, M.F., Sundsøy, P.R., Johansson, M.A., Rasheed, S.B., Engø-Monsen, K., Buckee, C.O.: Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Nat. Acad. Sci. 112(38), 11887–11892 (2015)

    Article  Google Scholar 

  20. Guitierrrez, Krings, Blondel: Evaluating socio-economic state of a country analyzing airtime credit and mobile phone datasets. arXiv preprint arXiv:1309.4496 (2013)

  21. Sundsøy, P., Bjelland, J., Reme, B., Iqbal, A., Jahani, E.: Deep learning applied to mobile phone data for Individual income classification. In: ICAITA 2016 International Conference on Artificial Intelligence and applications (2016)

    Google Scholar 

  22. Felbo, B., Pentland, S., Sundsøy, P., Montjoye, Y., Lehmann, S.: Using Deep Learning to predict demographics from mobile phone metadata. arXiv:1511.06660v4 (2016)

  23. Jahani, E., Sundsøy, P., Bjelland, J., Pentland, A., Bengtsson, L.M.: Improving official statistics in emerging markets using machine learning and mobile phone data. EPJ Data Sci. 6(1), 3 (2017)

    Article  Google Scholar 

  24. Montjoye, Y.-A., Quoidbach, J., Robic, F., Pentland, A(.: Predicting Personality Using Novel Mobile Phone-Based Metrics. In: Greenberg, Ariel M., Kennedy, William G., Bos, Nathan D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 48–55. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37210-0_6

    Chapter  Google Scholar 

  25. Sundsøy, P., Bjelland, J., Iqbal, A.M., de Montjoye, Y.A.: Big data-driven marketing: how machine learning outperforms marketers’ gut-feeling. In: International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, pp. 367–374 (2014)

    Google Scholar 

  26. Toole, J., Lin, Y.-r., Muehlegger, E., Shoag, D., Gonzalez, M., Lazer, D.: Tracking employment shocks using mobile phone data. J. R. Soc. Interface 12(107) (2015)

    Google Scholar 

  27. Almaatouq, A., Prieto-Castrillo, F., Pentland, A.: Mobile communication signatures of unemployment. In: International Conference on Social Informatics, pp. 407–418 (2016)

    Google Scholar 

  28. Dahl, G.: Improving Deep Neural Networks for LVCSR using Rectified Linear Units and Dropout. In: ICASSP, pp. 8609–8613 (2013)

    Google Scholar 

  29. Koyejo, O.: Consistent Binary Classification with Generalized Performance Metrics. NIPS (2014)

    Google Scholar 

  30. Gedeon, T.: Data Mining of inputs: analysing magnitude and functional measures. Int. J. Neural Syst. 8(2), 209–218 (1997)

    Article  Google Scholar 

  31. OECD: Main Economic Indicators (2016)

    Google Scholar 

  32. Ciccone, A., Hall, R.: Productivity and density of economic activity. Am. Econ. Rev. 86(1), 54–70 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pål Sundsøy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sundsøy, P., Bjelland, J., Reme, BA., Jahani, E., Wetter, E., Bengtsson, L. (2017). Towards Real-Time Prediction of Unemployment and Profession. In: Ciampaglia, G., Mashhadi, A., Yasseri, T. (eds) Social Informatics. SocInfo 2017. Lecture Notes in Computer Science(), vol 10540. Springer, Cham. https://doi.org/10.1007/978-3-319-67256-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67256-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67255-7

  • Online ISBN: 978-3-319-67256-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics