Abstract
At a societal level unemployment is an important indicator of the performance of an economy and risks in financial markets. This study provides the first confirmation that individual employment status can be predicted from standard mobile phone network logs externally validated with household survey data. Individual welfare and households’ vulnerability to shocks are intimately connected to employment status and professions of household breadwinners. By deriving a broad set of novel mobile phone network indicators reflecting users’ financial, social and mobility patterns we show how machine learning models can be used to predict 18 categories of profession in a South-Asian developing country. The model predicts individual unemployment status with 70.4% accuracy. We further show how unemployment can be aggregated from individual level and mapped geographically at cell tower resolution, providing a promising approach to map labor market economic indicators, and the distribution of economic productivity and vulnerability between censuses, especially in heterogeneous urban areas. The method also provides a promising approach to support data collection on vulnerable populations, which are frequently under-represented in official surveys.
Similar content being viewed by others
References
Lovati, J.: The unemployment rate as an economic indicator. Federal reserve bank of st.louis (1976)
Keynes, M.: The General Theory of Employment, Interest and Money. Palgrave Macmillan, Basingstoke, Hampshire (2009). ISBN 0-230-00476-8
International Labour Organization: Global Unemployment Trends. (2013)
Garegnani, P.: Heterogeneous capital, the production function and the theory of distribution. Rev. Econ. Stud. 37(3), 407–436 (1970)
Faberman, D., Haltiwanger, J.: The flow approach to labor markets: new data sources and micro-macro links. J. Econ. Perspect. 20(3), 3–26 (2006)
U.S. Bureau of Labor Statistics: How the Government Measures Unemployment. (2014)
International Labour Organization: World Employment Social Outlook. (2017)
Economy Watch: Unemployment and Poverty (2010). http://www.economywatch.com/unemployment/poverty.html
Einav, L., Levin, J.: Economics in the age of big data. Science 346(6210) (2014). DOI:10.1126/science.1243089
Lokanathan, S. Gunaratne, R.L.: Behavioral insights for development from Mobile Network Big Data: enlightening policy makers on the State of the Art (2014). http://dx.doi.org/10.2139/ssrn.2522814
Sundsøy, P.: Big Data for Social Sciences: Measuring patterns of human behavior through large-scale mobile phone data. PHD Thesis, arXiv:1702.08349 [cs.CY] (2017)
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N.: Computational social science. Science 323(5915), 721–723 (2009)
Blumenstock, C.: Predicting poverty and wealth from mobile phone metadata. Science 350(6264), 1073–1076 (2015)
Steele, J. E., Sundsøy, P., Pezzulo, C., Alegana, V., Bird, T., Blumenstock, J., Bjelland, J., Engø-Monsen, K., de Montjoye, Y. A., Iqbal, A., Hadiuzzaman, K., Lu, X., Wetter, E., Tatem, A., Bengtsson, L.: Mapping poverty using mobile phone and satellite data. J. R. Soc. Interface 14(127), (2017). 20160690
Sundsøy, P.: Mitigating the risks of financial exclusion: Predicting illiteracy with standard mobile phone logs. In: SBP-BRiMS 2017 International Conference on Social Computing, Behavioral-Cultural Modeling & Prediction and Behavior Representation in Modeling and Simulation (2017)
Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F.R., Gaughan, A.E., Blondel, V.D., Tatem, A.J.: Dynamic population mapping using mobile phone data. In: PNAS, pp. 15888–15893 (2014). doi:10.1073/pnas.1408439111
Lu, X., Wrathall, D.J., Sundsøy, P.R., Nadiruzzaman, M., Wetter, E., Iqbal, A., Qureshi, T., Tatem, A.J., Canright, G.S., Engø-Monsen, K., Bengtsson, L.: Detecting climate adaptation with mobile network data in Bangladesh: anomalies in communication, mobility and consumption patterns during cyclone Mahasen. Clim. Change 138(3), 505–519 (2016)
Lu, X., Wrathall, D.J., Sundsøy, P.R., Nadiruzzaman, M., Wetter, E., Iqbal, A., Qureshi, T., Tatem, A.J., Canright, G.S., Engø-Monsen, K., Bengtsson, L.: Unveiling hidden migration and mobility patterns in climate stressed regions: A longitudinal study of six million anonymous mobile phone users in Bangladesh. Glob. Environ. Change 38, 1–7 (2016)
Wesolowski, A., Qureshi, T., Boni, M.F., Sundsøy, P.R., Johansson, M.A., Rasheed, S.B., Engø-Monsen, K., Buckee, C.O.: Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Nat. Acad. Sci. 112(38), 11887–11892 (2015)
Guitierrrez, Krings, Blondel: Evaluating socio-economic state of a country analyzing airtime credit and mobile phone datasets. arXiv preprint arXiv:1309.4496 (2013)
Sundsøy, P., Bjelland, J., Reme, B., Iqbal, A., Jahani, E.: Deep learning applied to mobile phone data for Individual income classification. In: ICAITA 2016 International Conference on Artificial Intelligence and applications (2016)
Felbo, B., Pentland, S., Sundsøy, P., Montjoye, Y., Lehmann, S.: Using Deep Learning to predict demographics from mobile phone metadata. arXiv:1511.06660v4 (2016)
Jahani, E., Sundsøy, P., Bjelland, J., Pentland, A., Bengtsson, L.M.: Improving official statistics in emerging markets using machine learning and mobile phone data. EPJ Data Sci. 6(1), 3 (2017)
Montjoye, Y.-A., Quoidbach, J., Robic, F., Pentland, A(.: Predicting Personality Using Novel Mobile Phone-Based Metrics. In: Greenberg, Ariel M., Kennedy, William G., Bos, Nathan D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 48–55. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37210-0_6
Sundsøy, P., Bjelland, J., Iqbal, A.M., de Montjoye, Y.A.: Big data-driven marketing: how machine learning outperforms marketers’ gut-feeling. In: International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, pp. 367–374 (2014)
Toole, J., Lin, Y.-r., Muehlegger, E., Shoag, D., Gonzalez, M., Lazer, D.: Tracking employment shocks using mobile phone data. J. R. Soc. Interface 12(107) (2015)
Almaatouq, A., Prieto-Castrillo, F., Pentland, A.: Mobile communication signatures of unemployment. In: International Conference on Social Informatics, pp. 407–418 (2016)
Dahl, G.: Improving Deep Neural Networks for LVCSR using Rectified Linear Units and Dropout. In: ICASSP, pp. 8609–8613 (2013)
Koyejo, O.: Consistent Binary Classification with Generalized Performance Metrics. NIPS (2014)
Gedeon, T.: Data Mining of inputs: analysing magnitude and functional measures. Int. J. Neural Syst. 8(2), 209–218 (1997)
OECD: Main Economic Indicators (2016)
Ciccone, A., Hall, R.: Productivity and density of economic activity. Am. Econ. Rev. 86(1), 54–70 (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Sundsøy, P., Bjelland, J., Reme, BA., Jahani, E., Wetter, E., Bengtsson, L. (2017). Towards Real-Time Prediction of Unemployment and Profession. In: Ciampaglia, G., Mashhadi, A., Yasseri, T. (eds) Social Informatics. SocInfo 2017. Lecture Notes in Computer Science(), vol 10540. Springer, Cham. https://doi.org/10.1007/978-3-319-67256-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-67256-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67255-7
Online ISBN: 978-3-319-67256-4
eBook Packages: Computer ScienceComputer Science (R0)