Abstract
The evaluation of research results can be carried out with different purposes aligned with strategic goals of an institution, for example, to decide upon distribution of research funding or to recruit or promote employees of an institution involved in research. Whereas quantitative measures such as number of scientific papers or number of scientific staff are commonly used for such evaluation, the strategy of the institution can be set to achieve ambitious scientific goals. Therefore, a question arises as to how more quality oriented aspects of the research outcomes should be measured. To supply an appropriate dataset for evaluation of both types of metrics, a suitable framework should be provided, that ensures that neither incomplete, nor faulty data are used, that metric computation formulas are valid and the computed metrics are interpreted correctly. To provide such a framework with the best possible features, data from various available sources should be integrated to achieve an overall view on the scientific activity of an institution along with solving data quality issues. The paper presents a publication data integration system for excellence-based research analysis at the University of Latvia. The system integrates data available at the existing information systems at the university with data obtained from external sources. The paper discusses data integration flows and data integration problems including data quality issues. A data model of the integrated dataset is also presented. Based on this data model and integrated data, examples of quality oriented metrics and analysis results of them are provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hicks, D., Wouters, P., Waltman, L., De Rijcke, S., Rafols, I.: The Leiden Manifesto for research metrics. Nature 520(7548), 429–431 (2015). doi:10.1038/520429a
Kosten, J.: A classification of the use of research indicators. Scientometrics 108(1), 457–464 (2016). doi:10.1007/s11192-016-1904-7
Aagaard, K., Bloch, C., Schneider, J.W.: Impacts of performance-based research funding systems: the case of the Norwegian Publication Indicator. Res. Eval. 24(2), 106–117 (2015). doi:10.1093/reseval/rvv003
Nikolić, S., Penca, V., Ivanović, D., Surla, D., Konjović, Z.: Storing of bibliometric indicators in CERIF data model. In: International Conference on Internet Society Technology (2013). doi:10.13140/2.1.2196.5121
Quix, C., Matthias, J.: Information integration in research information systems. Procedia Comput. Sci. 33, 18–24 (2014). doi:10.1016/j.procs.2014.06.004
Jörg, B.: CERIF: the common European research information format model. Data Sci. J. 9, 24–31 (2010). doi:10.2481/dsj.CRIS4
Rampāne, I., Rozenberga, G.: Latvijas Universitātes publikāciju citējamība datubāzēs (2012–2015). Alma Mater (vasara), pp. 26–28 (2016)
Cabinet Regulation No. 1316: Regulations regarding calculation and assignment of grant-based funding for research institutions. https://likumi.lv/doc.php?id=262508
Sivertsen, G.: Data integration in Scandinavia. Scientometrics 106(2), 849–855 (2016). doi:10.1007/s11192-015-1817-x
Kulczycki, E., Korzeń, M., Korytkowski, P.: Toward an excellence-based research funding system: evidence from Poland. J. Informetr. 11(1), 282–298 (2017). doi:10.1016/j.joi.2017.01.001
Galimberti, P., Mornati, S.: The Italian model of distributed research information management systems: a case study. Procedia Comput. Sci. 106, 183–195 (2017). doi:10.1016/j.procs.2017.03.015
DSpace-CRIS Home. https://wiki.duraspace.org/display/DSPACECRIS/DSpace-CRIS+Home
The International Organisation for Research Information. http://eurocris.org/cerif/main-features-cerif
Teixeira da Silva, J.A., Memon, A.R.: CiteScore: a cite for sore eyes, or a valuable, transparent metric? Scientometrics 111(1), 553–556 (2017). doi:10.1007/s11192-017-2250-0
Moed, H.F.: Measuring contextual citation impact of scientific journals. J. Informetr. 4(3), 265–277 (2010). doi:10.1016/j.joi.2010.01.002
Gonzalez-Pereira, B., Guerrero-Bote, V.P., Moya-Anegon, F.: A new approach to the metric of journals’ scientific prestige: the SJR indicator. J. Informetr. 4(3), 379–391 (2010). doi:10.1016/j.joi.2010.03.002
Hardcastle, J.: New journal citation metric – impact per publication (2014). http://editorresources.taylorandfrancisgroup.com/new-journal-citation-metric-impact-per-publication/
Winkler, W.: The state of record linkage and current research problems. Technical report, Statistics of Income Division, US Census Bureau (1999)
Niedrite, L., Solodovnikova, D.: University IS architecture for the research evaluation support. In: 11th International Scientific and Practical Conference “Environment.Technology. Resources”, pp. 112–117. Rezekne Academy of Technologies, Rezekne (2017). doi:10.17770/etr2017vol2.2528
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Niedrite, L., Solodovnikova, D., Niedritis, A. (2017). Publication Data Integration as a Tool for Excellence-Based Research Analysis at the University of Latvia. In: Kirikova, M., et al. New Trends in Databases and Information Systems. ADBIS 2017. Communications in Computer and Information Science, vol 767. Springer, Cham. https://doi.org/10.1007/978-3-319-67162-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-67162-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67161-1
Online ISBN: 978-3-319-67162-8
eBook Packages: Computer ScienceComputer Science (R0)