Abstract
Parallel Tempering (PT) is an efficient Monte Carlo simulation method known from statistical physics. We present a novel PT-based Ant Colony Optimization algorithm (PTACO) in which multiple replicas of the Ant Colony System enhanced with a temperature parameter (ACST) are executed in parallel. Based on computational experiments on a set of TSP and ATSP instances we show that the PTACO converges (in terms of solutions quality) significantly faster than the ACS and is competitive to the state-of-the-art Ant Colony Extended algorithm.
Similar content being viewed by others
Notes
- 1.
Source code is available at https://github.com/RSkinderowicz/PTACO.
References
Ayob, M.B., Jaradat, G.M.: Hybrid ant colony systems for course timetabling problems. In: Proceedings of the 2nd Conference on Data Mining and Optimization, DMO 2009, Universiti Kebangsaan Malaysia, 27–28 October 2009, pp. 120–126. IEEE (2009)
Behnamian, J., Zandieh, M., Ghomi, S.F.: Parallel-machine scheduling problems with sequence-dependent setup times using an aco, SA and VNS hybrid algorithm. Expert Syst. Appl. 36(6), 9637–9644 (2009)
Chen, C.-H., Ting, C.-J.: A hybrid ant colony system for vehicle routing problem with time windows. J. East. Asia Soc. Transp. Stud. 6, 2822–2836 (2005)
Citrolo, A.G., Mauri, G.: A hybrid Monte Carlo ant colony optimization approach for protein structure prediction in the HP model. In: Graudenzi, A., Caravagna, G., Mauri, G., Antoniotti, M. (eds.) Proceedings of Wivace 2013 - Italian Workshop on Artificial Life and Evolutionary Computation, EPTCS, Milan, Italy, 1–2 July 2013, vol. 130, pp. 61–69 (2013)
Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 227–263. Springer, Boston (2010). doi:10.1007/978-1-4419-1665-5_8
Earl, D.J., Deem, M.W.: Parallel tempering: theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7(23), 3910–3916 (2005)
Escario, J.B., Jimenez, J.F., Giron-Sierra, J.M.: Ant colony extended: experiments on the travelling salesman problem. Expert Syst. Appl. 42(1), 390–410 (2015)
Katzgraber, H.G., Trebst, S., Huse, D.A., Troyer, M.: Feedback-optimized parallel tempering Monte Carlo. J. Stat. Mech.: Theory Exp. 2006(03), P03018 (2006)
Kone, A., Kofke, D.A.: Selection of temperature intervals for parallel-tempering simulations. J. Chem. Phys. 122(20), 206101 (2005)
Li, Y., Protopopescu, V.A., Arnold, N., Zhang, X., Gorin, A.: Hybrid parallel tempering and simulated annealing method. Appl. Math. Comput. 212(1), 216–228 (2009)
Skinderowicz, R.: Ant colony system with a restart procedure for TSP. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS, vol. 9876, pp. 91–101. Springer, Cham (2016). doi:10.1007/978-3-319-45246-3_9
Skinderowicz, R.: The GPU-based parallel ant colony system. J. Parallel Distrib. Comput. 98, 48–60 (2016)
Skinderowicz, R.: An improved ant colony system for the sequential ordering problem. Comput. Oper. Res. 86, 1–17 (2017)
Wang, C., Hyman, J.D., Percus, A., Caflisch, R.: Parallel tempering for the traveling salesman problem. Int. J. Mod. Phys. C 20(04), 539–556 (2009)
Zhu, J., Rui, T., Liao, M., Zhang, J.: Simulated annealing ant colony algorithm based on backfire method for QAP. In: Yu, X., Lienhart, R., Zha, Z., Liu, Y., Satoh, S. (eds.) The 4th International Conference on Internet Multimedia Computing and Service, ICIMCS 2012, Wuhan, China, 9–11 September 2012, pp. 100–105. ACM (2012)
Acknowledgments
This research was supported in part by PL-Grid Infrastructure.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Skinderowicz, R. (2017). Improving ACO Convergence with Parallel Tempering. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10449. Springer, Cham. https://doi.org/10.1007/978-3-319-67077-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-67077-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67076-8
Online ISBN: 978-3-319-67077-5
eBook Packages: Computer ScienceComputer Science (R0)