[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Analysing Cultural Events on Twitter

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10449))

Included in the following conference series:

Abstract

In this paper, we first present a model to represent message flows and their contents on Twitter, then a model and an instrumented methodology to describe and analyze these flows and their distribution among the various stakeholders. The aim is to explore the engagement and interactions between different types of stakeholders. We apply our methodology and tools to the 12th edition of the cultural event “European Night of Museums” (NDM16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.r-project.org/.

  2. 2.

    http://textometrie.ens-lyon.fr/.

  3. 3.

    https://gephi.org/.

  4. 4.

    https://neo4j.com/.

  5. 5.

    http://scikit-learn.org/stable/.

  6. 6.

    http://sphinxsearch.com/.

References

  1. Shou-De, L., et al. (eds.): 2nd Workshop on Natural Language Processing for Social Media. Association for Computational Linguistics and Dublin City University (2014)

    Google Scholar 

  2. Blondel, V., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. 2008(10), P10008 (2008)

    Article  Google Scholar 

  3. Courtin, A., Juanals, B., Minel, J., de Saint Léger, M.: A tool-based methodology to analyze social network interactions in cultural fields: the use case MuseumWeek. In: 6th International Conference on Social Informatics (SocInfo 2014), pp. 144–156 (2014)

    Google Scholar 

  4. Djemili, S., Longhi, J., Marinica, C., Kotzinos, D., Sarfat, G.E.: What does Twitter have to say about ideology? In: NLP 4 CMC: Natural Language Processing for Computer-Mediated Communication, pp. 16–25 (2014)

    Google Scholar 

  5. Espinos, A.: Museums on social media: analyzing growth through case studies. In: Museums and the Web (2016)

    Google Scholar 

  6. Fletcher, A., Lee, M.: Current social media uses and evaluations in American museums. Mus. Manag. Curatorship 27, 505–521 (2012)

    Article  Google Scholar 

  7. Foucault, N., Courtin, A.: Automatic classification of tweets for analyzing communication behavior museums. LREC 2016, 3006–3013 (2017)

    Google Scholar 

  8. Juanals, B., Minel, J.: Information flow on digital social networks during a cultural event: methodology and analysis of the european night of museums 2016 on Twitter. In: SMS+Society Special Issue (2017)

    Google Scholar 

  9. Kothari, A., Magdy, W., Darwish, K., Mourad, A., Taei, A.: Detecting comments on news articles in microblogs. In: Kiciman, E., et al. (eds.) 7th International Conference on Web and Social Media (ICWSM). The AAAI Press (2013)

    Google Scholar 

  10. Langa, L.: Does Twitter help museums engage with visitors? In: iSchools IDEALS, pp. 484–495. University of Illinois, Aix-les-Thermes (2014)

    Google Scholar 

  11. Lovejoy, K., Saxton, G.D.: Information, community, and action: how nonprofit organizations use social media. J. Comput.-Mediated Commun. 17(3), 337–353 (2012)

    Article  Google Scholar 

  12. Van der Maaten, L., Hinton, G.: Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  13. Missier, P., Romanovsky, A., Miu, T., Pal, A., Daniilakis, M., Garcia, A., Cedrim, D., da Silva Sousa, L.: Tracking dengue epidemics using twitter content classification and topic modelling. In: Casteleyn, S., Dolog, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9881, pp. 80–92. Springer, Cham (2016). doi:10.1007/978-3-319-46963-8_7

    Chapter  Google Scholar 

  14. Osterman, M., Thirunarayanan, M., Ferris, E., Pabon, L., Paul, N., Berger, R.: Museums and Twitter: an exploratory qualitative study of how museums use Twitter for audience development and engagement. J. Educ. Multimedia Hypermedia 21(3), 241–255 (2012)

    Google Scholar 

  15. Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection and earthquake, reporting system development. IEEE Trans. Knowl. Data Eng. 25(4), 919–931 (2013)

    Article  Google Scholar 

  16. Shiri, A., Rathi, D.: Twitter content categorisation: a public library perspective. J. Inf. Knowl. Manag. 12(4), 1350035 (2013)

    Article  Google Scholar 

  17. Villaespesa Cantalapiedra, H.: Measuring social media success: the value of the balanced scorecard as a tool for evaluation and strategic management in museum. Ph.D. thesis, University of Leicester (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Juanals .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Juanals, B., Minel, JL. (2017). Analysing Cultural Events on Twitter. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10449. Springer, Cham. https://doi.org/10.1007/978-3-319-67077-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67077-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67076-8

  • Online ISBN: 978-3-319-67077-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics