Abstract
Various efforts have been made to quantify scientific impact and identify the mechanisms that influence its future evolution. The first step is the identification of what constitutes scholarly impact and how it is measured. In this direction, various approaches focus on future citation count or h-index prediction at author or publication level, on fitting the distribution of citation accumulation or accurately identifying award winners, upcoming hot research topics or academic rising stars. A plethora of features have been contemplated as possible influential factors and assorted machine-learning methodologies have been adopted to ensure timely and accurate estimations. Here, we provide an overview of the field challenges, as well as a taxonomy of the existing approaches to identify the open issues that are yet to be addressed.
Similar content being viewed by others
References
Acuna, D.E., Allesina, S., Kording, K.P.: Future impact: predicting scientific success. Nature 489(7415), 201–202 (2012)
Börner, K., Dall’Asta, L., Ke, W., Vespignani, A.: Studying the emerging global brain: analyzing and visualizing the impact of co-authorship teams. Complexity 10(4), 57–67 (2005)
Bornmann, L., Leydesdorff, L., Wang, J.: How to improve the prediction based on citation impact percentiles for years shortly after the publication date? J. Inf. 8(1), 175–180 (2014)
Bornmann, L., Mutz, R., Hug, S.E., Daniel, H.P.: A multilevel meta-analysis of studies reporting correlations between the \(h\) index and 37 different \(h\) index variants. J. Inf. 5(3), 346–359 (2011)
Brizan, D.G., Gallagher, K., Jahangir, A., Brown, T.: Predicting citation patterns: defining and determining influence. Scientometrics 108(1), 183–200 (2016)
Cao, X., Chen, Y., Liu, K.R.: A data analytic approach to quantifying scientific impact. J. Inf. 10(2), 471–484 (2016)
Chakraborty, T., Kumar, S., Goyal, P., Ganguly, N., Mukherjee, A.: Towards a stratified learning approach to predict future citation counts. In: Proceedings 14th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL), pp. 351–360 (2014)
Chakraborty, T., Kumar, S., Goyal, P., Ganguly, N., Mukherjee, A.: On the categorization of scientific citation profiles in computer science. Commun. ACM 58(9), 82–90 (2015)
Chaudhuri, S., Dayal, U., Narasayya, V.: An overview of business intelligence technology. Commun. ACM 54(8), 88–98 (2011)
Davletov, F., Aydin, A.S., Cakmak, A.: High impact academic paper prediction using temporal and topological features. In: Proceedings 23rd ACM International Conference on Conference on Information and Knowledge Management (CIKM), pp. 491–498 (2014)
Dong, Y., Johnson, R.A., Chawla, N.V.: Can scientific impact be predicted? IEEE Trans. Big Data 2(1), 18–30 (2016)
Garner, J., Porter, A.L., Newman, N.C.: Distance and velocity measures: using citations to determine breadth and speed of research impact. Scientometrics 100(3), 687–703 (2014)
Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. 102(46), 16569–16572 (2005)
Jones, B.F., Weinberg, B.A.: Age dynamics in scientific creativity. Proc. Natl. Acad. Sci. 108(47), 18910–18914 (2011)
Ke, Q., Ferrara, E., Radicchi, F., Flammini, A.: Defining and identifying sleeping beauties in science. Proc. Natl. Acad. Sci. 112(24), 7426–7431 (2015)
Klimek, P.S., Jovanovic, A., Egloff, R., Schneider, R.: Successful fish go with the flow: citation impact prediction based on centrality measures for term-document networks. Scientometrics 107(3), 1265–1282 (2016)
Laurance, W.F., Useche, D.C., Laurance, S.G., Bradshaw, C.J.: Predicting publication success for biologists. Bioscience 63(10), 817 (2013)
Li, J., Shi, D., Zhao, S.X., Ye, F.Y.: A study of the “heartbeat spectra” for “sleeping beauties”. J. Inf. 8(3), 493–502 (2014)
Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A Stat. Mech. Appl. 390(6), 1150–1170 (2011)
Mazloumian, A.: Predicting scholars’ scientific impact. PLoS ONE 7(11), 1–5 (2012)
McNamara, D., Wong, P., Christen, P., Ng, K.S.: Predicting high impact academic papers using citation network features. In: Li, J., Cao, L., Wang, C., Tan, K.C., Liu, B., Pei, J., Tseng, V.S. (eds.) PAKDD 2013. LNCS, vol. 7867, pp. 14–25. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40319-4_2
Merton, R.K.: The Matthew effect in science. Science 159(3810), 56–63 (1968)
Nezhadbiglari, M., Gonçalves, M.A., Almeida, J.M.: Early prediction of scholar popularity. In: Proceedings 16th ACM/IEEE-CS on Joint Conference on Digital Libraries (JCDL), pp. 181–190 (2016)
Penner, O., Pan, R.K., Petersen, A.M., Fortunato, S.: The case for caution in predicting scientists’ future impact. Phys. Today 66(4), 8 (2013)
Pobiedina, N., Ichise, R.: Citation count prediction as a link prediction problem. Appl. Intell. 44(2), 252–268 (2016)
Pradhan, D., Paul, P.S., Maheswari, U., Nandi, S., Chakraborty, T.: C3-index: revisiting author’s performance measure. In: Proceedings 8th ACM Conference on Web Science (WebSci), pp. 318–319 (2016)
van Raan, A.F.J.: Sleeping beauties in science. Scientometrics 59(3), 467–472 (2004)
Revesz, P.Z.: A method for predicting citations to the scientific publications of individual researchers. In: Proceedings 18th International Database Engineering and Applications Symposium (IDEAS), pp. 9–18 (2014)
Revesz, P.Z.: Data mining citation databases: a new index measure that predicts Nobel prizewinners. In: Proceedings 19th International Database Engineering and Applications Symposium (IDEAS), pp. 1–9 (2015)
Sayyadi, H., Getoor, L.: Futurerank: ranking scientific articles by predicting their future pagerank. In: Proceedings SIAM International Conference on Data Mining (SDM), pp. 533–544 (2009)
Schreiber, M.: How relevant is the predictive power of the \(h\)-index? A case study of the time-dependent Hirsch index. J. Inf. 7(2), 325–329 (2013)
Sidiropoulos, A., Gogoglou, A., Katsaros, D., Manolopoulos, Y.: Gazing at the skyline for star scientists. J. Inf. 10(3), 789–813 (2016)
Sidiropoulos, A., Manolopoulos, Y.: A citation-based system to assist prize awarding. ACM SIGMOD Rec. 34(4), 54–60 (2005)
Sinatra, R., Wang, D., Deville, P., Song, C., Barabási, A.: Quantifying the evolution of individual scientific impact. Science 354(6312), aaf5239 (2016)
de Solla Price, D.J.: Networks of scientific papers. Science 149(3683), 510–515 (1965)
Vieira, E.S., Cabral, J.A., Gomes, J.A.: How good is a model based on bibliometric indicators in predicting the final decisions made by peers? J. Inf. 8(2), 390–405 (2014)
Wang, S., Xie, S., Zhang, X., Li, Z., Yu, P.S., He, Y.: Coranking the future influence of multiobjects in bibliographic network through mutual reinforcement. ACM Trans. Intell. Syst. Technol. 7(4), 64:1–64:28 (2016)
Way, S.F., Morgan, A.C., Clauset, A., Larremore, D.B.: The misleading narrative of the canonical faculty productivity trajectory. CoRR abs/1612.08228 (2016)
Wildgaard, L., Schneider, J.W., Larsen, B.: A review of the characteristics of \(108\) author-level bibliometric indicators. Scientometrics 101(1), 125–158 (2014)
Xiao, S., Yan, J., Li, C., Jin, B., Wang, X., Yang, X., Chu, S.M., Zhu, H.: On modeling and predicting individual paper citation count over time. In: Proceedings 25th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2676–2682 (2016)
Zhang, J., Ning, Z., Bai, X., Wang, W., Yu, S., Xia, F.: Who are the rising stars in academia? In: Proceedings 16th ACM/IEEE-CS on Joint Conference on Digital Libraries (JCDL), pp. 211–212 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Gogoglou, A., Manolopoulos, Y. (2017). Predicting the Evolution of Scientific Output. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10448. Springer, Cham. https://doi.org/10.1007/978-3-319-67074-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-67074-4_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67073-7
Online ISBN: 978-3-319-67074-4
eBook Packages: Computer ScienceComputer Science (R0)