[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Predicting the Evolution of Scientific Output

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10448))

Included in the following conference series:

Abstract

Various efforts have been made to quantify scientific impact and identify the mechanisms that influence its future evolution. The first step is the identification of what constitutes scholarly impact and how it is measured. In this direction, various approaches focus on future citation count or h-index prediction at author or publication level, on fitting the distribution of citation accumulation or accurately identifying award winners, upcoming hot research topics or academic rising stars. A plethora of features have been contemplated as possible influential factors and assorted machine-learning methodologies have been adopted to ensure timely and accurate estimations. Here, we provide an overview of the field challenges, as well as a taxonomy of the existing approaches to identify the open issues that are yet to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Acuna, D.E., Allesina, S., Kording, K.P.: Future impact: predicting scientific success. Nature 489(7415), 201–202 (2012)

    Article  Google Scholar 

  2. Börner, K., Dall’Asta, L., Ke, W., Vespignani, A.: Studying the emerging global brain: analyzing and visualizing the impact of co-authorship teams. Complexity 10(4), 57–67 (2005)

    Article  Google Scholar 

  3. Bornmann, L., Leydesdorff, L., Wang, J.: How to improve the prediction based on citation impact percentiles for years shortly after the publication date? J. Inf. 8(1), 175–180 (2014)

    Google Scholar 

  4. Bornmann, L., Mutz, R., Hug, S.E., Daniel, H.P.: A multilevel meta-analysis of studies reporting correlations between the \(h\) index and 37 different \(h\) index variants. J. Inf. 5(3), 346–359 (2011)

    Google Scholar 

  5. Brizan, D.G., Gallagher, K., Jahangir, A., Brown, T.: Predicting citation patterns: defining and determining influence. Scientometrics 108(1), 183–200 (2016)

    Article  Google Scholar 

  6. Cao, X., Chen, Y., Liu, K.R.: A data analytic approach to quantifying scientific impact. J. Inf. 10(2), 471–484 (2016)

    Google Scholar 

  7. Chakraborty, T., Kumar, S., Goyal, P., Ganguly, N., Mukherjee, A.: Towards a stratified learning approach to predict future citation counts. In: Proceedings 14th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL), pp. 351–360 (2014)

    Google Scholar 

  8. Chakraborty, T., Kumar, S., Goyal, P., Ganguly, N., Mukherjee, A.: On the categorization of scientific citation profiles in computer science. Commun. ACM 58(9), 82–90 (2015)

    Article  Google Scholar 

  9. Chaudhuri, S., Dayal, U., Narasayya, V.: An overview of business intelligence technology. Commun. ACM 54(8), 88–98 (2011)

    Article  Google Scholar 

  10. Davletov, F., Aydin, A.S., Cakmak, A.: High impact academic paper prediction using temporal and topological features. In: Proceedings 23rd ACM International Conference on Conference on Information and Knowledge Management (CIKM), pp. 491–498 (2014)

    Google Scholar 

  11. Dong, Y., Johnson, R.A., Chawla, N.V.: Can scientific impact be predicted? IEEE Trans. Big Data 2(1), 18–30 (2016)

    Article  Google Scholar 

  12. Garner, J., Porter, A.L., Newman, N.C.: Distance and velocity measures: using citations to determine breadth and speed of research impact. Scientometrics 100(3), 687–703 (2014)

    Article  Google Scholar 

  13. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. 102(46), 16569–16572 (2005)

    Article  Google Scholar 

  14. Jones, B.F., Weinberg, B.A.: Age dynamics in scientific creativity. Proc. Natl. Acad. Sci. 108(47), 18910–18914 (2011)

    Article  Google Scholar 

  15. Ke, Q., Ferrara, E., Radicchi, F., Flammini, A.: Defining and identifying sleeping beauties in science. Proc. Natl. Acad. Sci. 112(24), 7426–7431 (2015)

    Article  Google Scholar 

  16. Klimek, P.S., Jovanovic, A., Egloff, R., Schneider, R.: Successful fish go with the flow: citation impact prediction based on centrality measures for term-document networks. Scientometrics 107(3), 1265–1282 (2016)

    Article  Google Scholar 

  17. Laurance, W.F., Useche, D.C., Laurance, S.G., Bradshaw, C.J.: Predicting publication success for biologists. Bioscience 63(10), 817 (2013)

    Article  Google Scholar 

  18. Li, J., Shi, D., Zhao, S.X., Ye, F.Y.: A study of the “heartbeat spectra” for “sleeping beauties”. J. Inf. 8(3), 493–502 (2014)

    Google Scholar 

  19. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A Stat. Mech. Appl. 390(6), 1150–1170 (2011)

    Article  Google Scholar 

  20. Mazloumian, A.: Predicting scholars’ scientific impact. PLoS ONE 7(11), 1–5 (2012)

    Article  Google Scholar 

  21. McNamara, D., Wong, P., Christen, P., Ng, K.S.: Predicting high impact academic papers using citation network features. In: Li, J., Cao, L., Wang, C., Tan, K.C., Liu, B., Pei, J., Tseng, V.S. (eds.) PAKDD 2013. LNCS, vol. 7867, pp. 14–25. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40319-4_2

    Chapter  Google Scholar 

  22. Merton, R.K.: The Matthew effect in science. Science 159(3810), 56–63 (1968)

    Article  Google Scholar 

  23. Nezhadbiglari, M., Gonçalves, M.A., Almeida, J.M.: Early prediction of scholar popularity. In: Proceedings 16th ACM/IEEE-CS on Joint Conference on Digital Libraries (JCDL), pp. 181–190 (2016)

    Google Scholar 

  24. Penner, O., Pan, R.K., Petersen, A.M., Fortunato, S.: The case for caution in predicting scientists’ future impact. Phys. Today 66(4), 8 (2013)

    Article  Google Scholar 

  25. Pobiedina, N., Ichise, R.: Citation count prediction as a link prediction problem. Appl. Intell. 44(2), 252–268 (2016)

    Article  Google Scholar 

  26. Pradhan, D., Paul, P.S., Maheswari, U., Nandi, S., Chakraborty, T.: C3-index: revisiting author’s performance measure. In: Proceedings 8th ACM Conference on Web Science (WebSci), pp. 318–319 (2016)

    Google Scholar 

  27. van Raan, A.F.J.: Sleeping beauties in science. Scientometrics 59(3), 467–472 (2004)

    Article  Google Scholar 

  28. Revesz, P.Z.: A method for predicting citations to the scientific publications of individual researchers. In: Proceedings 18th International Database Engineering and Applications Symposium (IDEAS), pp. 9–18 (2014)

    Google Scholar 

  29. Revesz, P.Z.: Data mining citation databases: a new index measure that predicts Nobel prizewinners. In: Proceedings 19th International Database Engineering and Applications Symposium (IDEAS), pp. 1–9 (2015)

    Google Scholar 

  30. Sayyadi, H., Getoor, L.: Futurerank: ranking scientific articles by predicting their future pagerank. In: Proceedings SIAM International Conference on Data Mining (SDM), pp. 533–544 (2009)

    Chapter  Google Scholar 

  31. Schreiber, M.: How relevant is the predictive power of the \(h\)-index? A case study of the time-dependent Hirsch index. J. Inf. 7(2), 325–329 (2013)

    MathSciNet  Google Scholar 

  32. Sidiropoulos, A., Gogoglou, A., Katsaros, D., Manolopoulos, Y.: Gazing at the skyline for star scientists. J. Inf. 10(3), 789–813 (2016)

    Google Scholar 

  33. Sidiropoulos, A., Manolopoulos, Y.: A citation-based system to assist prize awarding. ACM SIGMOD Rec. 34(4), 54–60 (2005)

    Article  Google Scholar 

  34. Sinatra, R., Wang, D., Deville, P., Song, C., Barabási, A.: Quantifying the evolution of individual scientific impact. Science 354(6312), aaf5239 (2016)

    Article  Google Scholar 

  35. de Solla Price, D.J.: Networks of scientific papers. Science 149(3683), 510–515 (1965)

    Article  Google Scholar 

  36. Vieira, E.S., Cabral, J.A., Gomes, J.A.: How good is a model based on bibliometric indicators in predicting the final decisions made by peers? J. Inf. 8(2), 390–405 (2014)

    Google Scholar 

  37. Wang, S., Xie, S., Zhang, X., Li, Z., Yu, P.S., He, Y.: Coranking the future influence of multiobjects in bibliographic network through mutual reinforcement. ACM Trans. Intell. Syst. Technol. 7(4), 64:1–64:28 (2016)

    Article  Google Scholar 

  38. Way, S.F., Morgan, A.C., Clauset, A., Larremore, D.B.: The misleading narrative of the canonical faculty productivity trajectory. CoRR abs/1612.08228 (2016)

    Google Scholar 

  39. Wildgaard, L., Schneider, J.W., Larsen, B.: A review of the characteristics of \(108\) author-level bibliometric indicators. Scientometrics 101(1), 125–158 (2014)

    Article  Google Scholar 

  40. Xiao, S., Yan, J., Li, C., Jin, B., Wang, X., Yang, X., Chu, S.M., Zhu, H.: On modeling and predicting individual paper citation count over time. In: Proceedings 25th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2676–2682 (2016)

    Google Scholar 

  41. Zhang, J., Ning, Z., Bai, X., Wang, W., Yu, S., Xia, F.: Who are the rising stars in academia? In: Proceedings 16th ACM/IEEE-CS on Joint Conference on Digital Libraries (JCDL), pp. 211–212 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Gogoglou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gogoglou, A., Manolopoulos, Y. (2017). Predicting the Evolution of Scientific Output. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10448. Springer, Cham. https://doi.org/10.1007/978-3-319-67074-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67074-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67073-7

  • Online ISBN: 978-3-319-67074-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics