Abstract
Crowdsourcing offers great potential to overcome the limitations of controlled lab studies. To guide future designs of crowdsourcing-based studies for visualization, we review visualization research that has attempted to leverage crowdsourcing for empirical evaluations of visualizations. We discuss six core aspects for successful employment of crowdsourcing in empirical studies for visualization – participants, study design, study procedure, data, tasks, and metrics & measures. We then present four case studies, discussing potential mechanisms to overcome common pitfalls. This chapter will help the visualization community understand how to effectively and efficiently take advantage of the exciting potential crowdsourcing has to offer to support empirical visualization research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
http://www.wired.com/2006/06/crowds last accessed 14 Jun 2017.
- 2.
We adopt this terminology, which means a single self-contained task, from Amazon Mechanical Turk.
- 3.
https://medium.com/@silberman/stop-citing-ross-et-al-2010-who-are-the-crowdworkers-b3b9b1e8d300 last accessed 14 Jun 2017.
- 4.
http://demographics.mturk-tracker.com last accessed 14 Jun 2017.
- 5.
http://www.quizrevolution.com/act101820/mini/go/ last accessed 14 Jun 2017, http://perceptualedge.com/files/GraphDesignIQ.html last accessed 14 Jun 2017.
- 6.
http://www.colourblindawareness.org/colour-blindness/types-of-colour-blindness last accessed 14 Jun 2017.
- 7.
http://www.color-blindness.com/color-blindness-tests last accessed 14 Jun 2017.
- 8.
https://fold.it/portal last accessed 14 Jun 2017.
- 9.
https://github.com/codementum/experimentr last accessed 14 Jun 2017.
- 10.
http://archive.ics.uci.edu/ml last accessed 14 Jun 2017.
References
Adams, F.M., Osgood, C.E.: A cross-cultural study of the affective meanings of color. J. Cross Cult. Psychol. 4(2), 135–156 (1973)
Aigner, W., Hoffmann, S., Rind, A.: EvalBench: a software library for visualization evaluation. Comput. Graph. Forum 32(3pt1), 41–50 (2013)
Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualization of Time-Oriented Data. Human-Computer Interaction. Springer, London (2011). doi:10.1007/978-0-85729-079-3
Albuquerque, G., Lowe, T., Magnor, M.: Synthetic generation of high-dimensional datasets. IEEE Trans. Vis. Comput. Graph. 17(12), 2317–2324 (2011)
Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.: Visualizing sets and set-typed data: state-of-the-art and future challenges. In: Eurographics conference on Visualization (EuroVis)-State of The Art Reports, pp. 1–21 (2014)
Alvarez-Garcia, S., Baeza-Yates, R., Brisaboa, N.R., Larriba-Pey, J., Pedreira, O.: Graphgen: a tool for automatic generation of multipartite graphs from arbitrary data. In: 2012 Eighth Latin American Web Congress (LA-WEB), pp. 87–94. IEEE (2012)
Álvarez-García, S., Baeza-Yates, R., Brisaboa, N.R., Larriba-Pey, J.L., Pedreira, O.: Automatic multi-partite graph generation from arbitrary data. J. Syst. Softw. 94, 72–86 (2014)
Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in information visualization. In: IEEE Symposium on Information Visualization (INFOVIS 2005), pp. 111–117. IEEE (2005)
Andrews, K., Kasanicka, J.: A comparative study of four hierarchy browsers using the hierarchical visualisation testing environment (HVTE). In: 11th International Conference Information Visualization (IV 2007), pp. 81–86. IEEE (2007)
Andrienko, G., Andrienko, N.: Privacy issues in geospatial visual analytics. In: Gartner, G., Ortag, F. (eds.) Advances in Location-Based Services. Lecture Notes in Geoinformation and Cartography. Springer, Heidelberg (2012). doi:10.1007/978-3-642-24198-7_16
Archambault, D., Purchase, H.C.: The mental map and memorability in dynamic graphs. In: Pacific Visualization Symposium (PacificVis), pp. 89–96. IEEE (2012)
Archambault, D., Purchase, H.C.: Mental map preservation helps user orientation in dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 475–486. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36763-2_42
Bach, B., Dragicevic, P., Archambault, D., Hurter, C., Carpendale, S.: A descriptive framework for temporal data visualizations based on generalized space-time cubes. Comput. Graph. Forum (2016). http://dx.doi.org/10.1111/cgf.12804
Bach, B., Spritzer, A., Lutton, E., Fekete, J.-D.: Interactive random graph generation with evolutionary algorithms. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 541–552. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36763-2_48
Bateman, S., Mandryk, R.L., Gutwin, C., Genest, A., McDine, D., Brooks, C.: Useful junk? The effects of visual embellishment on comprehension and memorability of charts. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2573–2582. ACM (2010)
Berlin, B., Kay, P.: Basic Color Terms. University of California Press, Berkeley (1969)
Bertin, J.: Sémiologie graphique: Les diagrammes-Les réseaux-Les cartes. Gauthier-VillarsMouton & Cie (1973)
Borgo, R., Abdul-Rahman, A., Mohamed, F., Grant, P.W., Reppa, I., Floridi, L., Chen, M.: An empirical study on using visual embellishments in visualization. IEEE Trans. Vis. Comput. Graph. 18(12), 2759–2768 (2012)
Boy, J., Rensink, R.A., Bertini, E., Fekete, J.D.: A principled way of assessing visualization literacy. IEEE Trans. Vis. Comput. Graph. 20(12), 1963–1972 (2014)
Boy, J., Detienne, F., Fekete, J.D.: Storytelling in information visualizations: does it engage users to explore data? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1449–1458. ACM (2015)
Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization tasks. IEEE Trans. Vis. Comput. Graph. 19(12), 2376–2385 (2013)
Bremm, S., Von Landesberger, T., Heß, M., Fellner, D.: PCDC-on the highway to data-a tool for the fast generation of large synthetic data sets. In: EuroVis Workshop on Visual Analytics, pp. 7–11 (2012)
Brewer, C.A., MacEachren, A.M., Pickle, L.W., Herrmann, D.: Mapping mortality: evaluating color schemes for choropleth maps. Ann. Assoc. Am. Geograph. 87(3), 411–438 (1997)
Brinkmann, G., McKay, B.D.: Fast generation of planar graphs. MATCH Commun. Math. Comput. Chem. 58(2), 323–357 (2007)
Bristor, V.J., Drake, S.V.: Linking the language arts and content areas through visual technology. THE J. 22(2), 74–77 (1994)
Çöltekin, A., Fabrikant, S.I., Lacayo, M.: Exploring the efficiency of users’ visual analytics strategies based on sequence analysis of eye movement recordings. Int. J. Geograph. Inf. Sci. 24(10), 1559–1575 (2010)
Çöltekin, A., Heil, B., Garlandini, S., Fabrikant, S.I.: Evaluating the effectiveness of interactive map interface designs: a case study integrating usability metrics with eye-movement analysis. Cartography Geogr. Inf. Sci. 36(1), 5–17 (2009)
Cernea, D., Kerren, A., Ebert, A.: Detecting insight and emotion in visualization applications with a commercial EEG headset. In: SIGRAD 2011 Conference on Evaluations of Graphics and Visualization-Efficiency, Usefulness, Accessibility, Usability, pp. 53–60 (2011)
Cernea, D., Weber, C., Ebert, A., Kerren, A.: Emotion scents - a method of representing user emotions on GUI widgets. In: Proceedings of the SPIE 2013 Conference on Visualization and Data Analysis (VDA 2013). IS&T/SPIE (2013)
Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S., Singh, M.: How well do line drawings depict shape? ACM Trans. Graph. 28(3), 28:1–28:9 (2009)
Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper Perennia, New York (1990)
Dasgupta, A., Kosara, R.: Privacy-preserving data visualization using parallel coordinates. In: IS&T/SPIE Electronic Imaging, pp. 786800-1–786800-12. International Society for Optics and Photonics (2011)
Demiralp, Ç., Bernstein, M.S., Heer, J.: Learning perceptual kernels for visualization design. IEEE Trans. Vis. Comput. Graph. 20(12), 1933–1942 (2014)
Elmqvist, N., Vande Moere, A., Jetter, H.C., Cernea, D., Reiterer, H., Jankun-Kelly, T.J.: Fluid interaction for information visualization. Inf. Vis. 10(4), 327–340 (2011)
Fabrikant, S.I., Christophe, S., Papastefanou, G., Maggi, S.: Emotional response to map design aesthetics. In: 7th International Conference on Geographical Information Science, pp. 18–21 (2012)
Farrugia, M., Quigley, A.: Effective temporal graph layout: a comparative study of animation versus static display methods. Inf. Vis. 10(1), 47–64 (2011)
Fort, K., Adda, G., Cohen, K.B.: Amazon mechanical turk: gold mine or coal mine? Comput. Linguist. 37(2), 413–420 (2011)
Gadiraju, U., Kawase, R., Dietze, S., Demartini, G.: Understanding malicious behavior in crowdsourcing platforms: the case of online surveys. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1631–1640. ACM (2015)
Ghani, S., Elmqvist, N.: Improving revisitation in graphs through static spatial features. In: Graphic Interface (GI 2011), pp. 737–743 (2011)
Ghani, S., Elmqvist, N., Yi, J.S.: Perception of animated node-link diagrams for dynamic graphs. Comput. Graph. Forum 31(1), 1205–1214 (2012)
Giannotti, F., Pedreschi, D.: Mobility, Data Mining and Privacy: Geographic Knowledge Discovery, p. 410. Springer, Heidelberg (2008). doi:10.1007/978-3-540-75177-9
van Ham, F., Rogowitz, B.: Perceptual organization in user-generated graph layouts. IEEE Trans. Vis. Comput. Graph. 14(6), 1333–1339 (2008)
Haroz, S., Kosara, R., Franconeri, S.L.: Isotype visualization-working memory, performance, and engagement with pictographs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1191–1200. ACM (2015)
Harrison, L., Yang, F., Franconeri, S., Chang, R.: Ranking visualizations of correlation using Weber’s law. IEEE Trans. Vis. Comput. Graph. 20(12), 1943–1952 (2014)
Heer, J., Bostock, M.: Crowdsourcing graphical perception: using mechanical turk to assess visualization design. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 203–212. ACM (2010)
Hirth, M., Hoßfeld, T., Tran-Gia, P.: Anatomy of a crowdsourcing platform-using the example of microworkers.com. In: 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 322–329. IEEE (2011)
Isenberg, P., Zuk, T., Collins, C., Carpendale, S.: Grounded evaluation of information visualizations. In: Proceedings of the 2008 Workshop on BEyond Time and Errors: Novel Evaluation Methods for Information Visualization (BELIV 2008) pp. 6:1–6:8. ACM (2008)
Jianu, R., Rusu, A., Hu, Y., Taggart, D.: How to display group information on node-link diagrams: an evaluation. IEEE Trans. Vis. Comput. Graph. 20(11), 1530–1541 (2014)
Kerren, A., Ebert, A., Meyer, J. (eds.): Human-Centered Visualization Environments. LNCS, vol. 4417. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71949-6
Kerren, A., Schreiber, F.: Network visualization for integrative bioinformatics. In: Chen, M., Hofestädt, R. (eds.) Approaches in Integrative Bioinformatics, pp. 173–202. Springer, Heidelberg (2014). doi:10.1007/978-3-642-41281-3_7
Lam, H., Bertini, E., Isenberg, P., Plaisant, C., Carpendale, S.: Empirical studies in information visualization: seven scenarios. IEEE Trans. Vis. Comput. Graph. 18(9), 1520–1536 (2012)
Laramee, R.S., Kosara, R.: Challenges and Unsolved Problems. In: Kerren et al. [49], pp. 231–254
Lebreton, P., Mäki, T., Skodras, E., Hupont, I., Hirth, M.: Bridging the gap between eye tracking and crowdsourcing. In: Proceedings of SPIE, vol. 9394, pp. 93940W–93940W-14 (2015)
Lee, B., Plaisant, C., Parr, C.S., Fekete, J.D., Henry, N.: Task taxonomy for graph visualization. In: Proceedings of the 2006 AVI Workshop on Beyond Time and Rrrors: Novel Evaluation Methods for Information Visualization, pp. 1–5. ACM (2006)
Li, H., Moacdieh, N.: Is “chart junk” useful? An extended examination of visual embellishment. Proc. Hum. Factors Ergon. Soc. Annual Meeting 58(1), 1516–1520 (2014)
Light, A., Bartlein, P.J.: The end of the rainbow? Color schemes for improved data graphics. EOS 85(40), 385–391 (2004)
Mackay, W.E., Appert, C., Beaudouin-Lafon, M., Chapuis, O., Du, Y., Fekete, J.D., Guiard, Y.: Touchstone: exploratory design of experiments. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1425–1434. ACM (2007)
Maggi, S., Fabrikant, S.: Embodied decision making with animations. In: Proceedings of International Conference on Geographic Information Science 2014 (2014)
Maggi, S., Fabrikant, S.I.: Triangulating eye movement data of animated displays. In: ET4S@GIScience, pp. 27–31 (2014)
Maggi, S., Fabrikant, S.I., Imbert, J.P., Hurter, C.: How do display design and user characteristics matter in animations? An empirical study with air traffic control displays. Cartographica 51(1), 25–37 (2016)
Mahyar, N., Kim, S.H., Kwon, B.C.: Towards a taxonomy for evaluating user engagement in information visualization. In: Workshop on Personal Visualization: Exploring Everyday Life (2015)
Marriott, K., Purchase, H., Wybrow, M., Goncu, C.: Memorability of visual features in network diagrams. IEEE Trans. Vis. Comput. Graph. 18(12), 2477–2485 (2012)
Martin, D.: Doing Psychology Experiments, 7th edn. Thomson Wadsworth, Belmont (2008)
Martin, D., Hanrahan, B.V., O’Neill, J., Gupta, N.: Being a turker. In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, pp. 224–235. ACM (2014)
McCloud, S.: Understanding Comics: The Invisible Art. HarperPerennial, New York (1994)
McGee, F., Dingliana, J.: An empirical study on the impact of edge bundling on user comprehension of graphs. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, pp. 620–627. ACM (2012)
Micallef, L., Dragicevic, P., Fekete, J.D.: Assessing the effect of visualizations on bayesian reasoning through crowdsourcing. IEEE Trans. Vis. Comput. Graph. 18(12), 2536–2545 (2012)
Monreale, A., Andrienko, G.L., Andrienko, N.V., Giannotti, F., Pedreschi, D., Rinzivillo, S., Wrobel, S.: Movement data anonymity through generalization. Trans. Data Priv. 3(2), 91–121 (2010)
Munzner, T.: A nested model for visualization design and validation. IEEE Trans. Vis. Comput. Graph. 15(6), 921–928 (2009)
Okoe, M., Jianu, R.: Graphunit: evaluating interactive graph visualizations using crowdsourcing. Comput. Graph. Forum 34(3), 451–460 (2015)
Paas, F., Tuovinen, J.E., Tabbers, H., Van Gerven, P.W.: Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 38(1), 63–71 (2003)
Pandey, A.V., Rall, K., Satterthwaite, M.L., Nov, O., Bertini, E.: How deceptive are deceptive visualizations? An empirical analysis of common distortion techniques. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1469–1478. ACM (2015)
Papadopoulos, C., Gutenko, I., Kaufman, A.: VEEVVIE: visual explorer for empirical visualization, VR and interaction experiments. IEEE Trans. Vis. Comput. Graph. 22(1), 111–120 (2016)
Peck, E.M.M., Yuksel, B.F., Ottley, A., Jacob, R.J., Chang, R.: Using fNIRS brain sensing to evaluate information visualization interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 473–482. ACM (2013)
Plaisant, C.: The challenge of information visualization evaluation. In: Proceedings of the Working Conference on Advanced Visual Interfaces (AVI 2004), pp. 109–116. ACM (2004)
Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997). doi:10.1007/3-540-63938-1_67
Purchase, H.C.: Experimental Human-Computer Interaction: A Practical Guide with Visual Examples. Cambridge University Press, Cambridge (2012)
Ross, J., Irani, L., Silberman, M., Zaldivar, A., Tomlinson, B.: Who are the crowdworkers? Shifting demographics in mechanical turk. In: CHI 2010 Extended Abstracts on Human Factors in Computing Systems, pp. 2863–2872. ACM (2010)
Saket, B., Scheidegger, C., Kobourov, S.: Towards understanding enjoyment and flow in information visualization. In: EuroVis. The Eurographics Association (Short Paper) (2015)
Saket, B., Scheidegger, C., Kobourov, S.: Comparing node-link and node-link-group visualizations from an enjoyment perspective. Comput. Graph. Forum 35(3), 41–50 (2016)
Saket, B., Scheidegger, C., Kobourov, S.G., Börner, K.: Map-based visualizations increase recall accuracy of data. Comput. Graph. Forum 34(3), 441–450. http://dx.doi.org/10.1111/cgf.12656
Sakshaug, J.W., Raghunathan, T.E.: Synthetic data for small area estimation. In: Domingo-Ferrer, J., Magkos, E. (eds.) PSD 2010. LNCS, vol. 6344, pp. 162–173. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15838-4_15
Sakshaug, J.W., Raghunathan, T.E.: Generating synthetic data to produce public-use microdata for small geographic areas based on complex sample survey data with application to the national health interview survey. J. Appl. Stat. 41(10), 2103–2122 (2014)
Sakshaug, J.W., Raghunathan, T.E.: Nonparametric generation of synthetic data for small geographic areas. In: Domingo-Ferrer, J. (ed.) PSD 2014. LNCS, vol. 8744, pp. 213–231. Springer, Cham (2014). doi:10.1007/978-3-319-11257-2_17
Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the 1996 IEEE Symposium on Visual Languages, Boulder, Colorado, USA, 3–6 September 1996, pp. 336–343. IEEE Computer Society (1996)
Tanahashi, Y., Ma, K.L.: Stock lamp: an engagement-versatile visualization design. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 595–604. ACM (2015)
Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the generation of spatiotemporal datasets. In: Güting, R.H., Papadias, D., Lochovsky, F. (eds.) SSD 1999. LNCS, vol. 1651, pp. 147–164. Springer, Heidelberg (1999). doi:10.1007/3-540-48482-5_11
Valiati, E.R., Pimenta, M.S., Freitas, C.M.: A taxonomy of tasks for guiding the evaluation of multidimensional visualizations. In: Proceedings of the 2006 AVI Workshop on Beyond Time and Errors: Novel Evaluation Methods for Information Visualization, pp. 1–6. ACM (2006)
Vande Moere, A., Tomitsch, M., Wimmer, C., Christoph, B., Grechenig, T.: Evaluating the effect of style in information visualization. IEEE Trans. Vis. Comput. Graph. 18(12), 2739–2748 (2012)
Wainer, H.: A test of graphicacy in children. Appl. Psychol. Measure. 4(3), 331–340 (1980)
Walny, J., Huron, S., Carpendale, S.: An exploratory study of data sketching for visual representation. Comput. Graph. Forum 34(3), 231–240 (2015)
Wang, B., Ruchikachorn, P., Mueller, K.: SketchPadN-D: WYDIWYG sculpting and editing in high-dimensional space. IEEE Trans. Vis. Comput. Graph. 19(12), 2060–2069 (2013)
Ware, C.: Information Visualization: Preception for Design, 3rd edn. Elsevier, Amsterdam (2013)
Ware, C., Mitchell, P.: Visualizing graphs in three dimensions. ACM Trans. Appl. Percept. 5(1), 2:1–2:15 (2008)
Wilkening, J., Fabrikant, S.I.: How users interact with a 3d geo-browser under time pressure. Cartography Geogr. Inf. Sci. 40(1), 40–52 (2013)
Xu, P., Ehinger, K.A., Zhang, Y., Finkelstein, A., Kulkarni, S.R., Xiao, J.: TurkerGaze: crowdsourcing saliency with webcam based eye tracking. CoRR abs/1504.06755 (2015)
Yang, H., Li, Y., Zhou, M.X.: Understand users’ comprehension and preferences for composing information visualizations. ACM Trans. Comput. Hum. Interact. 21(1), 6:1–6:30 (2014)
Ying, X., Wu, X.: Graph generation with prescribed feature constraints. In: SDM, vol. 9, pp. 966–977. SIAM (2009)
Ziemkiewicz, C., Kosara, R.: Preconceptions and individual differences in understanding visual metaphors. Comput. Graph. Forum 28(3), 911–918 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Borgo, R. et al. (2017). Crowdsourcing for Information Visualization: Promises and Pitfalls. In: Archambault, D., Purchase, H., Hoßfeld, T. (eds) Evaluation in the Crowd. Crowdsourcing and Human-Centered Experiments. Lecture Notes in Computer Science(), vol 10264. Springer, Cham. https://doi.org/10.1007/978-3-319-66435-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-66435-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66434-7
Online ISBN: 978-3-319-66435-4
eBook Packages: Computer ScienceComputer Science (R0)