Abstract
We construct a real square system related to a given over-determined real system. We prove that the simple real zeros of the over-determined system are the simple real zeros of the related square system and the real zeros of the two systems are one-to-one correspondence with the constraint that the value of the sum of squares of the polynomials in the over-determined system at the real zeros is identically zero. After certifying the simple real zeros of the related square system with the interval methods, we assert that the certified zero is a local minimum of the sum of squares of the input polynomials. If the value of the sum of the squares of the input polynomials at the certified zero is equal to zero, then it is a zero of the input system. Notice that a complex system with complex zeros can be transformed into a real system with real zeros.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akogul, T.A., Hauenstein, J.D., Szanto, A.: Certifying solutions to overdetermined and singular polynomial systems over \(\mathbb{Q}\), 12 August 2014. arXiv: 1408.2721v1 [cs.SC]
Allamigeon, X., Gaubert, S., Magron, V., Werner, B.: Formal proofs for nonlinear optimization (2014). arXiv:1404.7282
Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998)
Dayton, B., Li, T., Zeng, Z.: Multiple zeros of nonlinear systems. Math. Comp. 80, 2143–2168 (2011)
Dayton, B., Zeng, Z.: Computing the multiplicity structure in solving polynomial systems. In: Kauers, M. (ed.) Proceedings of ISSAC 2005, pp. 116–123. ACM, New York (2005)
Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation of clusters of zeros: case of embedding dimension one. Found. Comput. Math. 7, 1–58 (2007)
Dedieu, J.P., Shub, M.: Newton’s method for overdetermined systems of equations. Math. Comput. 69(231), 1099–1115 (1999)
Hauenstein, J.D., Wampler, C.W.: Isosingular sets and deflation. Found. Comput. Math. 13(3), 371–403 (2013)
Hauenstein, J.D., Mourrain, B., Szanto, A.: Certifying isolated singular points and their multiplicity structure. In: Proceedings of ISSAC 2015, pp. 213–220 (2015)
Hauenstein, J.D., Sottile, F.: Algorithm 921: alphaCertified: certifying solutions to polynomial systems. ACM Trans. Math. Softw. 38(4), 28 (2012)
Kanzawa, Y., Kashiwagi, M., Oishi, S.: An algorithm for finding all solutions of parameter-dependent nonlinear equations with guaranteed accuracy. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 82(10), 33–39 (1999)
Kanzawa, Y., Oishi, S.: Approximate singular solutions of nonlinear equations and a numerical method of proving their existence. Sūrikaisekikenkyūsho Kōkyūroku 990, 216–223 (1997). Theory and application of numerical calculation in science and technology, II (Japanese) Kyoto (1996)
Kaltofen, E., Li, B., Yang, Z., Zhi, L.: Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars. In: Proceedings of ISSAC 2008, pp. 155–164, New York. ACM (2008)
Rohn, J.: Positive definiteness and stability of interval matrices. SIAM J. Matrix Anal. Appl. 15, 175–184 (1994)
Kaltofen, E.L., Li, B., Yang, Z., Zhi, L.: Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients. J. Symb. Comput. 47(1), 1–15 (2012)
Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing 4, 247–293 (1969)
Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated singularities of polynomial systems. Theor. Comput. Sci. 359, 111–122 (2006)
Li, N., Zhi, L.: Verified error bounds for isolated singular solutions of polynomial systems. SIAM J. Numer. Anal. 52(4), 1623–1640 (2014)
Li, S.: Linear Algebra. Higher Education Press (2006). ISBN 978-7-04-019870-6
Moore, R.E.: A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal. 14, 611–615 (1977)
Mantzaflaris, A., Mourrain, B.: Deflation and certified isolation of singular zeros of polynomial systems. In: Proceedings ISSAC 2011, pp. 249–256 (2011)
Monniaux, D., Corbineau, P.: On the generation of positivstellensatz witnesses in degenerate cases. In: Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 249–264. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22863-6_19
Nakaya, Y., Oishi, S., Kashiwagi, M., Kanzawa, Y.: Numerical verification of nonexistence of solutions for separable nonlinear equations and its application to all solutions algorithm. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 86(5), 45–53 (2003)
Ojika, T.: A numerical method for branch points of a system of nonlinear algebraic equations. Appl. Numer. Math. 4, 419–430 (1988)
Ojika, T., Watanabe, S., Mitsui, T.: Deflation algorithm for the multiple roots of a system of nonlinear equations. J. Math. Anal. Appl. 96, 463–479 (1983)
Peyrl, H., Parrilo, P.A.: A Macaulay2 package for computing sum of squares decompositions of polynomials with rational coefficients. In: Proceeding of SNC 2007, pp. 207–208 (2007)
Peyrl, H., Parrilo, P.A.: Computing sum of squares decompositions with rational coefficients. Theor. Comput. Sci. 409(2), 269–281 (2008)
Rump, S.M.: Solving algebraic problems with high accuracy. In: Proceedings of the Symposium on A New Approach to Scientific Computation, San Diego, CA, USA, pp. 51–120. Academic Press Professional Inc. (1983)
Rump, S.M., Graillat, S.: Verified error bounds for multiple roots of systems of nonlinear equations. Numer. Algorithms 54(3), 359–377 (2010)
El Din, M.S., Zhi, L.: Computing rational points in convex semialgebraic sets and sum of squares decompositions. SIAM J. Optim. 20(6), 2876–2889 (2010)
Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R.E., Gross, K.I., Martin, C.F. (eds.) The Merging of Disciplines : New Directions in Pure, Applied and Computational Mathematics, pp. 185–196. Springer, Heidelberg (1986). doi:10.1007/978-1-4612-4984-9_13
Yamamura, K., Kawata, H., Tokue, A.: Interval solution of nonlinear equations using linear programming. BIT Numer. Math. 38(1), 186–199 (1998)
Zeng, Z.: Computing multiple roots of inexact polynomials. Math. Comput. 74, 869–903 (2005)
Acknowledgement
The work is partially supported by NSFC Grants 11471327.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Cheng, JS., Dou, X. (2017). Certifying Simple Zeros of Over-Determined Polynomial Systems. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2017. Lecture Notes in Computer Science(), vol 10490. Springer, Cham. https://doi.org/10.1007/978-3-319-66320-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-66320-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66319-7
Online ISBN: 978-3-319-66320-3
eBook Packages: Computer ScienceComputer Science (R0)