[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cognitive Feedback and Behavioral Feedforward Automation Perspectives for Modeling and Validation in a Learning Context

  • Conference paper
  • First Online:
Model-Driven Engineering and Software Development (MODELSWARD 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 692))

Abstract

State-of-the-art technologies have made it possible to provide a learner with immediate computer-assisted feedback by delivering a feedback targeting cognitive aspects of learning, (e.g. reflecting on a result, explaining a concept, i.e. improving understanding). Fast advancement of technology has recently generated increased interest for previously non-feasible approaches for providing feedback based on learning behavioral observations by exploiting different traces of learning processes stored in information systems. Such learner behavior data makes it possible to observe different aspects of learning processes in which feedback needs of learners (e.g. difficulties, engagement issues, inefficient learning processes, etc.) based on individual learning trajectories can be traced. By identifying problems earlier in a learning process it is possible to deliver individualized feedback helping learners to take control of their own learning, i.e. to become self-regulated learners, and teachers to understand individual feedback needs and/or adapt their teaching strategies. In this work we (i) propose cognitive computer-assisted feedback mechanisms using a combination of MDE based simulation augmented with automated feedback, and (ii) discuss perspectives for behavioral feedback, i.e. feedforward, that can be based on learning process analytics in the context of learning conceptual modeling. Aggregated results of our previous studies assessing the effectiveness of the proposed cognitive feedback method with respect to improved understanding on different dimensions of knowledge, as well as feasibility of behavioral feedforward automation based on learners behavior patterns, are presented. Despite our focus on conceptual modeling and specific diagrams, the principles of the approach presented in this work can be used to support educational feedback automation for a broader spectrum of diagram types beyond the scope of conceptual modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shute, V.J.: Focus on formative feedback. Rev. Educ. Res. 78(1), 153–189 (2008)

    Article  Google Scholar 

  2. Nicol, D.J., Macfarlane-Dick, D.: Formative assessment and self-regulated learning: a model and seven principles of good feedback practice. Stud. High. Educ. 31(2), 199–218 (2006)

    Article  Google Scholar 

  3. Eyers, D., Jordan, J., Hendry, K.: What are student perceptions of the timeliness of feedback? (2016). http://learning.cf.ac.uk/developing-educators/pcutl/project-reports/what-are-student-perceptions-of-the-timeliness-of-feedback/. Cited Apr 2016

  4. Irons, A.: Enhancing Learning Through Formative Assessment and Feedback. Routledge (2007)

    Google Scholar 

  5. Narciss, S.: Feedback strategies for interactive learning tasks. In: Handbook of Research on Educational Communications and Technology, pp. 125–144 (2008)

    Google Scholar 

  6. Butler, D.L., Winne, P.H.: Feedback and self-regulated learning: a theoretical synthesis. Rev. Educ. Res. 65(3), 245–281 (1995)

    Article  Google Scholar 

  7. Zimmerman, B.J.: Investigating self-regulation and motivation: historical background, methodological developments, and future prospects. Am. Educ. Res. J. 45(1), 166–183 (2008)

    Article  MathSciNet  Google Scholar 

  8. Sedrakyan, G.: Process-Oriented Feedback Perspectives Based on Feedback-Enabled Simulation and Learning Process Data Analytics. KU, Leuven (2016)

    Google Scholar 

  9. Sedrakyan, G., De Weerdt, J., Snoeck, M.: Process-mining enabled feedback: “tell me what I did wrong” vs. “tell me how to do it right”. Comput. Hum. Behav. 57(C), 352–376 (2016)

    Google Scholar 

  10. Sedrakyan, G., Snoeck, M., De Weerdt, J.: Process mining analysis of conceptual modeling behavior of novices - empirical study using JMermaid modeling and experimental logging environment. Comput. Hum. Behav. 41(C), 486–503 (2014)

    Google Scholar 

  11. Schenk, K.D., Vitalari, N.P., Davis, K.S.: Differences between novice and expert systems analysts: what do we know and what do we do? J. Manage. Inf. Syst. 15(1), 9–50 (1998)

    Article  Google Scholar 

  12. Wang, W., Brooks, R.J.: Empirical investigations of conceptual modeling and the modeling process. In: Simulation Conference, pp. 762–770, Winter 2007

    Google Scholar 

  13. Erickson, J., Keng, S.: Can UML be simplified? practitioner use of uml in separate domains. In: Proceedings of the 12th Workshop on Exploring Modeling Methods for Systems Analysis and Design (EMMSAD 2007), held in Conjunctiun with the 19th Conference on Advanced Information Systems (CAiSE 2007), Trondheim, Norway (2007)

    Google Scholar 

  14. Wilmont, I., Hengeveld, S., Barendsen, E., Hoppenbrouwers, S.: Cognitive mechanisms of conceptual modelling. In: Ng, W., Storey, Veda C., Trujillo, Juan C. (eds.) ER 2013. LNCS, vol. 8217, pp. 74–87. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41924-9_7

    Chapter  Google Scholar 

  15. Siau, K., Loo, P.-P.: Identifying Difficulties in Learning Uml. Inf. Syst. Manage. 23(3), 43–51 (2006)

    Article  Google Scholar 

  16. Shanks, G., Tansley, E., Weber, R.: Using ontology to validate conceptual models. Commun. ACM 46(10), 85–89 (2003)

    Article  Google Scholar 

  17. Barjis, J., et al.: Innovative Teaching Using Simulation and Virtual Environments. Interdisc. J. Inf. Knowl. Manage. 7, 237–255 (2012)

    Google Scholar 

  18. Van Merriënboer, J.J., Kirschner, P.A.: Ten Steps to Complex Learning: A Systematic Approach to Four-Component Instructional Design. Routledge (2012)

    Google Scholar 

  19. Rutten, N., van Joolingen, W.R., van der Veen, J.T.: The learning effects of computer simulations in science education. Comput. Educ. 58(1), 136–153 (2012)

    Article  Google Scholar 

  20. Akkoyun, O., Careddu, N.: Mine simulation for educational purposes: a case study. Comput. Appl. Eng. Educ. (2014)

    Google Scholar 

  21. Okutsu, M., DeLaurentis, D., Brophy, S., Lambert, J.: Teaching an aerospace engineering design course via virtual worlds: a comparative assessment of learning outcomes. Comput. Educ. 60(1), 288–298 (2013)

    Article  Google Scholar 

  22. Datta, A.K., Rakesh, V., Way, D.G.: Simulation as an integrator in an undergraduate biological engineering curriculum. Comput. Appl. Eng. Educ. 21(4), 717–727 (2013)

    Article  Google Scholar 

  23. Lateef, F.: Simulation-based learning: just like the real thing. J. Emergencies, Trauma Shock 3(4), 348 (2010)

    Article  Google Scholar 

  24. Gaba, D.M.: The future vision of simulation in healthcare. Simul. Healthc. 2(2), 126–135 (2007)

    Article  Google Scholar 

  25. Lindland, O.I., Sindre, G., Solvberg, A.: Understanding quality in conceptual modeling. IEEE Softw. 11(2), 42–49 (1994)

    Article  Google Scholar 

  26. Nelson, H.J., et al.: A conceptual modeling quality framework. Softw. Qual. J. 20(1), 201–228 (2012)

    Article  Google Scholar 

  27. Lindland, O.I., Krogstie, J.: Validating conceptual models by transformational prototyping. In: Rolland, C., Bodart, F., Cauvet, C. (eds.) CAiSE 1993. LNCS, vol. 685, pp. 165–183. Springer, Heidelberg (1993). doi:10.1007/3-540-56777-1_9

    Chapter  Google Scholar 

  28. Hess, T.A.: Investigation of Prototype Roles in Conceptual Design Using Case Study and Protocol Study Methods. Clemson University (2012)

    Google Scholar 

  29. Yang, M.C.: A study of prototypes, design activity, and design outcome. Des. Stud. 26(6), 649–669 (2005)

    Article  Google Scholar 

  30. Hevner, A.R., et al.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)

    Google Scholar 

  31. Borland: Keeping your business relevant with Model Driven Architecture (MDA) (2004). http://www.omg.org/mda/presentations.htm

  32. Gustas, R.: Conceptual modeling and integration of static and dynamic aspects of service architectures. In: Sicilia, M.-A., Kop, C., Sartori, F. (eds.) ONTOSE 2010. LNBIP, vol. 62, pp. 17–32. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16496-5_2

    Chapter  Google Scholar 

  33. Alanen, M., Porres, I.: Model interchange using OMG standards. In: 31st EUROMICRO Conference on Software Engineering and Advanced Applications. IEEE (2005)

    Google Scholar 

  34. Desfray, P.: UML Profiles versus Metamodel extensions: an ongoing debate. In OMG’s UML Workshops: UML in the .com Enterprise: Modeling CORBA, Components, XML/XMI and Metadata Workshop (2000)

    Google Scholar 

  35. Huang, S., Gohel, V., Hsu, S.: Towards interoperability of UML tools for exchanging high-fidelity diagrams. In: Proceedings of the 25th Annual ACM International Conference on Design of Communication. ACM (2007)

    Google Scholar 

  36. Lundell, B., Lings, B., Persson, A., Mattsson, A.: UML model interchange in heterogeneous tool environments: an analysis of adoptions of XMI 2. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp. 619–630. Springer, Heidelberg (2006). doi:10.1007/11880240_43

    Chapter  Google Scholar 

  37. Snoeck, M.: Enterprise Information Systems Engineering: The MERODE Approach 2014. Springer, Cham (2014)

    Google Scholar 

  38. Sedrakyan, G., Snoeck, M.: A PIM-to-Code requirements engineering framework. In: Proceedings of Modelsward 2013–1st International Conference on Model-driven Engineering and Software Development-Proceedings (2013)

    Google Scholar 

  39. Snoeck, M., et al.: Computer aided modelling exercises. Inf. Educ. 6(1), 231–248 (2007)

    Google Scholar 

  40. Sedrakyan, G., Snoeck, M.: Lightweight semantic prototyper for conceptual modeling. In: Indulska, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8823, pp. 298–302. Springer, Cham (2014). doi:10.1007/978-3-319-12256-4_32

    Google Scholar 

  41. Prather, D.C.: Trial-and-error versus errorless learning: Training, transfer, and stress. Am. J. Psychol., 377–386 (1971)

    Google Scholar 

  42. Sedrakyan, G., Poelmans, S., Snoeck, M.: Assessing the influence of feedback-inclusive rapid prototyping on understanding the semantics of parallel UML statecharts by novice modellers. Inf. Softw. Technol. 82, 159–172 (2016)

    Google Scholar 

  43. Sedrakyan, G., Snoeck, M.: Do we need to teach testing skills in courses on requirements engineering and modelling? In: CEUR Workshop Proceedings (2014)

    Google Scholar 

  44. Sedrakyan, G., Snoeck, M.: Effects of simulation on novices’ understanding of the concept of inheritance in conceptual modeling. In: Jeusfeld, Manfred A., Karlapalem, K. (eds.) ER 2015. LNCS, vol. 9382, pp. 327–336. Springer, Cham (2015). doi:10.1007/978-3-319-25747-1_32

    Chapter  Google Scholar 

  45. Sedrakyan, G., Snoeck, M., Poelmans, S.: Assessing the effectiveness of feedback enabled simulation in teaching conceptual modeling. Comput. Educ. 78, 367–382 (2014)

    Article  Google Scholar 

  46. Stefanidis, D.: Optimal acquisition and assessment of proficiency on simulators in surgery. Surg. Clin. North Am. 90(3), 475–489 (2010)

    Article  Google Scholar 

  47. Ellis, R.: Corrective Feedback and Teacher Development. L2 J. 1(1) (2009)

    Google Scholar 

  48. Ellis, R.: A typology of written corrective feedback types. ELT J. 63(2), 97–107 (2009)

    Article  Google Scholar 

  49. Sedrakyan, G., Snoeck, M.: Enriching model execution with feedback to support testing of semantic conformance between models and requirements: Design and evaluation of feedback automation architecture. In: Modelsward 2016 - 4th International Conference on Model-driven Engineering and Software Development, Rome, Italy (2016)

    Google Scholar 

  50. Trochim, W.M.: The Research Methods Knowledge Base, http://trochim.human.cornell.edu/kb/index.htm. Version 2 Aug 2000

  51. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13(3), 319–340 (1989)

    Article  Google Scholar 

  52. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manage. Sci. 35(8), 982–1003 (1989)

    Article  Google Scholar 

  53. Venkatesh, V., et al.: User acceptance of information technology: toward a unified view. MIS Q. 27(3) (2003)

    Google Scholar 

  54. Hsu, C.-L., Lu, H.-P.: Consumer behavior in online game communities: a motivational factor perspective. Comput. Hum. Behav. 23(3), 1642–1659 (2007)

    Article  MathSciNet  Google Scholar 

  55. Bourgonjon, J., et al.: Students’ perceptions about the use of video games in the classroom. Comput. Educ. 54(4), 1145–1156 (2010)

    Article  Google Scholar 

  56. Ives, B., Olson, M.H., Baroudi, J.J.: The measurement of user information satisfaction. Commun. ACM 26(10), 785–793 (1983)

    Article  Google Scholar 

  57. Wixom, B.H., Todd, P.A.: A theoretical integration of user satisfaction and technology acceptance. Inf. Syst. Res. 16(1), 85–102 (2005)

    Article  Google Scholar 

  58. Sedrakyan, G., Snoeck, M.: Technology-enhanced support for learning conceptual modeling. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) BPMDS/EMMSAD -2012. LNBIP, vol. 113, pp. 435–449. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31072-0_30

    Chapter  Google Scholar 

  59. Snoeck, M., Sedrakyan, G.: Tutorial: boosting requirements analysis and validation skills through feedback-enabled semantic prototyping (2015)

    Google Scholar 

  60. Snoeck, M., Sedrakyan, G.. Tutorial: novel way of training conceptual modeling skills by means of feedback-enabled simulation (2015)

    Google Scholar 

  61. Sedrakyan, G., Snoeck, M.: Feedback-enabled MDA-prototyping effects on modeling knowledge, In: Enterprise, Business-Process and Information Systems Modeling, pp. 411–425. Springer (2013)

    Google Scholar 

  62. Sedrakyan, G., Järvelä, S., Kirschner, P.,: Conceptual framework for feedback automation and personalization for designing learning analytics dashboards. In: Conference EARLI SIG 27, Online Measures of Learning Processes (2016)

    Google Scholar 

  63. Sedrakyan, G., Malmberg, J., Noroozi, O., Verbert, K., Järvelä, S., and Kirschner, P.: Designing a learning analytics dashboard for feedback to support learning regulation (2017) (submitted)

    Google Scholar 

  64. Sedrakyan, G., Leony, D., Munoz-Merino, P. J., Delgado Kloos, K. Verbert, K.: Evaluating student-facing learning dashboards of affective states. In: 12th European Conference on Technology Enhanced Learning (ECTEL’17) - Data Driven Approaches in Digital Education, Tallinn, Estonia (2017)

    Google Scholar 

  65. Leony, D., Sedrakyan, G., Munoz-Merino, P. J., Delgado Kloos, K., Verbert, K.: Evaluating usability of affective state visualizations using AffectVis, an affect-aware dashboard for students. J. Res. Innovative Teach. Learn. (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayane Sedrakyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sedrakyan, G., Snoeck, M. (2017). Cognitive Feedback and Behavioral Feedforward Automation Perspectives for Modeling and Validation in a Learning Context. In: Hammoudi, S., Pires, L., Selic, B., Desfray, P. (eds) Model-Driven Engineering and Software Development. MODELSWARD 2016. Communications in Computer and Information Science, vol 692. Springer, Cham. https://doi.org/10.1007/978-3-319-66302-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66302-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66301-2

  • Online ISBN: 978-3-319-66302-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics