[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Analysis of Two Tracing Traitor Schemes via Coding Theory

  • Conference paper
  • First Online:
Coding Theory and Applications (ICMCTA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10495))

Included in the following conference series:

Abstract

We compare two popular tracing traitor schemes (1) using non-binary codes with identifiable parent property (IPP-codes) and (2) using family of sets with identifiable parent property. We establish a natural basis for comparing and show that the second approach is stronger than IPP-codes. We also establish a new lower bound on the cardinality of the family of sets with identifiable parent property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). doi:10.1007/3-540-48658-5_25

    Google Scholar 

  2. Hollmann, H.D., van Lint, J.H., Linnartz, J.P., Tolhuizen, L.M.: On codes with the identifiable parent property. J. Comb. Theor. Ser. A 82(2), 121–133 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barg, A., Cohen, G., Encheva, S., Kabatiansky, G., Zémor, G.: A hypergraph approach to the identifying parent property: the case of multiple parents. SIAM J. Discrete Math. 14(3), 423–431 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Cohen, G., Krivelevich, M., Litsyn, S.: Generalized hashing and parent-identifying codes. J. Comb. Theor. Ser. A 10(1), 207–215 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inf. Theor. 47, 1042–1049 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blackburn, S.R.: Combinatorial schemes for protecting digital content. Surv. Comb. 307, 43–78 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blakley, G.R.: Safeguarding cryptographic keys. Proc. Natl. Comput. Conf. 48, 313–317 (1979)

    Google Scholar 

  9. Stinson, D.R., Wei, R.: Combinatorial properties and constructions of traceability schemes and frameproof codes. SIAM J. Discrete Math. 11(1), 41–53 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Collins, M.J.: Upper bounds for parent-identifying set systems. Des. Codes Cryptogr. 51(2), 167–173 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gu, Y., Miao, Y.: Bounds on traceability schemes. arXiv preprint arXiv:1609.08336 (2016)

  12. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theor. 44, 1897–1905 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erdos, P., Frankl, P., Furedi, Z.: Families of finite sets in which no set is covered by the union of two others. J. Comb. Theor. Ser. A 33(2), 158–166 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Furedi, Z., Erdos, P., Frankl, P.: Families of finite sets in which no set is covered by the union ofr others. Isr. J. Math. 51(1), 79–89 (1985)

    MATH  Google Scholar 

  15. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theor. 10(4), 363–377 (1964)

    Article  MATH  Google Scholar 

  16. Dyachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive codes. Probl. Inf. Transm. 18(2), 166–171 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Quang, A.N., Zeisel, T.: Bounds on constant weight binary superimposed codes. Probl. Control Inf. Theor. 17, 223–230 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Zinov’ev, V.A., Ericson, T.: On concatenated constant-weight codes beyond the Varshamov-Gilbert bound. Probl. Inf. Transm. 23(1), 110–111 (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigory Kabatiansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Egorova, E., Kabatiansky, G. (2017). Analysis of Two Tracing Traitor Schemes via Coding Theory. In: Barbero, Á., Skachek, V., Ytrehus, Ø. (eds) Coding Theory and Applications. ICMCTA 2017. Lecture Notes in Computer Science(), vol 10495. Springer, Cham. https://doi.org/10.1007/978-3-319-66278-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66278-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66277-0

  • Online ISBN: 978-3-319-66278-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics