Abstract
We compare two popular tracing traitor schemes (1) using non-binary codes with identifiable parent property (IPP-codes) and (2) using family of sets with identifiable parent property. We establish a natural basis for comparing and show that the second approach is stronger than IPP-codes. We also establish a new lower bound on the cardinality of the family of sets with identifiable parent property.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). doi:10.1007/3-540-48658-5_25
Hollmann, H.D., van Lint, J.H., Linnartz, J.P., Tolhuizen, L.M.: On codes with the identifiable parent property. J. Comb. Theor. Ser. A 82(2), 121–133 (1998)
Barg, A., Cohen, G., Encheva, S., Kabatiansky, G., Zémor, G.: A hypergraph approach to the identifying parent property: the case of multiple parents. SIAM J. Discrete Math. 14(3), 423–431 (2001)
Alon, N., Cohen, G., Krivelevich, M., Litsyn, S.: Generalized hashing and parent-identifying codes. J. Comb. Theor. Ser. A 10(1), 207–215 (2003)
Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inf. Theor. 47, 1042–1049 (2001)
Blackburn, S.R.: Combinatorial schemes for protecting digital content. Surv. Comb. 307, 43–78 (2003)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Blakley, G.R.: Safeguarding cryptographic keys. Proc. Natl. Comput. Conf. 48, 313–317 (1979)
Stinson, D.R., Wei, R.: Combinatorial properties and constructions of traceability schemes and frameproof codes. SIAM J. Discrete Math. 11(1), 41–53 (1998)
Collins, M.J.: Upper bounds for parent-identifying set systems. Des. Codes Cryptogr. 51(2), 167–173 (2009)
Gu, Y., Miao, Y.: Bounds on traceability schemes. arXiv preprint arXiv:1609.08336 (2016)
Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theor. 44, 1897–1905 (1998)
Erdos, P., Frankl, P., Furedi, Z.: Families of finite sets in which no set is covered by the union of two others. J. Comb. Theor. Ser. A 33(2), 158–166 (1982)
Furedi, Z., Erdos, P., Frankl, P.: Families of finite sets in which no set is covered by the union ofr others. Isr. J. Math. 51(1), 79–89 (1985)
Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theor. 10(4), 363–377 (1964)
Dyachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive codes. Probl. Inf. Transm. 18(2), 166–171 (1982)
Quang, A.N., Zeisel, T.: Bounds on constant weight binary superimposed codes. Probl. Control Inf. Theor. 17, 223–230 (1988)
Zinov’ev, V.A., Ericson, T.: On concatenated constant-weight codes beyond the Varshamov-Gilbert bound. Probl. Inf. Transm. 23(1), 110–111 (1987)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Egorova, E., Kabatiansky, G. (2017). Analysis of Two Tracing Traitor Schemes via Coding Theory. In: Barbero, Á., Skachek, V., Ytrehus, Ø. (eds) Coding Theory and Applications. ICMCTA 2017. Lecture Notes in Computer Science(), vol 10495. Springer, Cham. https://doi.org/10.1007/978-3-319-66278-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-66278-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66277-0
Online ISBN: 978-3-319-66278-7
eBook Packages: Computer ScienceComputer Science (R0)