[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fractional-Order Integral Sliding Mode Controller for Biaxial Motion Control System

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10463))

Included in the following conference series:

  • 4284 Accesses

Abstract

Biaxial tables are widely applied in high performance motion control applications for high accuracy. Tracking error is one of the most significant indicators of machining precision, and tracking control is an effective means to eliminate the tracking error. In this paper, to attenuate the tracking error and reduce the chattering phenomenon in the control input simultaneously, a fractional-order integral sliding mode controller is proposed. Compared with the existing sliding mode controller, the proposed control law not only maintains the original robustness against variations but also reduces the tracking error effectively. At the same time, the overshoot can be weakened and the reaching law will converge to the sliding surface more rapidly. Experiments conducted on a biaxial table demonstrate that the proposed control scheme is easy to apply, the tracking error is smaller and the input chatter can be improved significantly compared to the integer SMC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tomizuka, M.: Zero phase error tracking algorithm for digital control. J. Dyn. Syst. Meas. Control 109(1), 65–68 (1987)

    Article  MATH  Google Scholar 

  2. Altintas, Y., Erkorkmaz, K., Zhu, W.H.: Sliding mode controller design for high speed feed drives. CIRP Ann.-Manuf. Technol. 49(1), 265–270 (2000)

    Article  Google Scholar 

  3. Sun, D.: Position synchronization of multiple motion axes with adaptive coupling control. Automatica 39(6), 997–1005 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barton, K.L., Alleyne, A.G.: A cross-coupled iterative learning control design for precision motion control. IEEE Trans. Control Syst. Technol. 16(6), 1218–1231 (2008)

    Article  Google Scholar 

  5. Yong, Y.K., Liu, K., Moheimani, S.O.R.: Reducing cross-coupling in a compliant XY nanopositioner for fast and accurate raster scanning. IEEE Trans. Control Syst. Technol. 18(5), 1172–1179 (2010)

    Article  Google Scholar 

  6. Boiko, I., Fridman, L., Iriarte, R.: Analysis of chattering in continuous sliding mode control. In: Proceedings of the 2005 American Control Conference, pp. 2439–2444. IEEE (2005)

    Google Scholar 

  7. Delavari, H., Ghaderi, R., Ranjbar, A., et al.: Fuzzy fractional order sliding mode controller for nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 15(4), 963–978 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhang, B.T., Pi, Y.G., Luo, Y.: Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA Trans. 51(5), 649–656 (2012)

    Article  Google Scholar 

  9. Yin, C., Chen, Y.Q., Zhong, S.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tang, Y., Zhang, X., Zhang, D., et al.: Fractional order sliding mode controller design for antilock braking systems. Neurocomputing 111, 122–130 (2013)

    Article  Google Scholar 

  11. Aghababa, M.P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69(1), 247–261 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, X., Zhao, H., Zhao, X., et al.: Dual sliding mode contouring control with high accuracy contour error estimation for five-axis CNC machine tools. Int. J. Mach. Tools Manuf 108, 74–82 (2016)

    Article  Google Scholar 

  13. Erkorkmaz, K., Altintas, Y.: High speed CNC system design. Part II: modeling and identification of feed drives. Int. J. Mach. Tools Manuf. 41(10), 1487–1509 (2001)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant Nos. 51405175, 51535004, 51323009 and 51375196.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yu, X., Zhao, H., Li, X., Ding, H. (2017). Fractional-Order Integral Sliding Mode Controller for Biaxial Motion Control System. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10463. Springer, Cham. https://doi.org/10.1007/978-3-319-65292-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65292-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65291-7

  • Online ISBN: 978-3-319-65292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics