[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

GMM Supervectors for Limited Training Data in Hyperspectral Remote Sensing Image Classification

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10425))

Included in the following conference series:

Abstract

Severely limited training data is one of the major and most common challenges in the field of hyperspectral remote sensing image classification. Supervised learning on limited training data requires either (a) designing a highly capable classifier that can handle such information scarcity, or (b) designing a highly informative and easily separable feature set. In this paper, we adapt GMM supervectors to hyperspectral remote sensing image features. We evaluate the proposed method on two datasets. In our experiments, inclusion of GMM supervectors leads to a mean classification improvement of about \(4.6\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahari, M.H., Saeidi, R., Hamme, H.V., Leeuwen, D.V.: Accent recognition using i-vector, Gaussian mean supervector and Gaussian posterior probability supervector for spontaneous telephone speech. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Institute of Electrical and Electronics Engineers. IEEE, May 2013

    Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Bruzzone, L., Chi, M., Marconcini, M.: A novel transductive svm for semisupervised classification of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 44(11), 3363–3373 (2006)

    Article  Google Scholar 

  4. Castaings, T., Waske, B., Atli Benediktsson, J., Chanussot, J.: On the influence of feature reduction for the classification of hyperspectral images based on the extended morphological profile. Int. J. Remote Sens. 31(22), 5921–5939 (2010)

    Article  Google Scholar 

  5. Cerva, P., Silovsky, J., Zdansky, J.: Comparison of generative and discriminative approaches for speaker recognition with limited data. Radioengineering 18(3), 307–316 (2009)

    Google Scholar 

  6. Chi, M., Feng, R., Bruzzone, L.: Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Adv. Space Res. 41(11), 1793–1799 (2008)

    Article  Google Scholar 

  7. Christlein, V., Bernecker, D., Hönig, F., Maier, A., Angelopoulou, E.: Writer identification using GMM supervectors and exemplar-SVMs. Pattern Recogn. 63, 258–267 (2017)

    Article  Google Scholar 

  8. Dalla Mura, M., Atli Benediktsson, J., Waske, B., Bruzzone, L.: Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int. J. Remote Sens. 31(22), 5975–5991 (2010)

    Article  Google Scholar 

  9. Dalla Mura, M., Benediktsson, J.A., Waske, B., Bruzzone, L.: Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 48(10), 3747–3762 (2010)

    Article  Google Scholar 

  10. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, San Diego (2013)

    MATH  Google Scholar 

  12. Hoffbeck, J.P., Landgrebe, D.A.: Covariance matrix estimation and classification with limited training data. IEEE Trans. Pattern Anal. Mach. Intell. 18(7), 763–767 (1996)

    Article  Google Scholar 

  13. Hu, M.-K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  14. Huang, X., Guan, X., Benediktsson, J.A., Zhang, L., Li, J., Plaza, A., Dalla Mura, M.: Multiple morphological profiles from multicomponent-base images for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(12), 4653–4669 (2014)

    Article  Google Scholar 

  15. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)

    Article  Google Scholar 

  16. Jackson, Q., Landgrebe, D.A.: An adaptive classifier design for high-dimensional data analysis with a limited training data set. IEEE Trans. Geosci. Remote Sens. 39(12), 2664–2679 (2001)

    Article  Google Scholar 

  17. Kelly, F.: Automatic recognition of ageing speakers. Ph.D. thesis, Trinity College Dublin (2014)

    Google Scholar 

  18. Kuo, B.-C., Landgrebe, D.A.: Nonparametric weighted feature extraction for classification. IEEE Trans. Geosci. Remote Sens. 42(5), 1096–1105 (2004)

    Article  Google Scholar 

  19. Landgrebe, D.A.: Signal Theory Methods in Multispectral Remote Sensing, vol. 29. Wiley, Hoboken (2005)

    Google Scholar 

  20. Lee, C., Landgrebe, D.A.: Feature extraction based on decision boundaries. IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 388–400 (1993)

    Article  Google Scholar 

  21. Liu, T., Gu, Y., Jia, X., Benediktsson, J.A., Chanussot, J.: Class-specific sparse multiple kernel learning for spectral-spatial hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 54(12), 7351 (2016)

    Article  Google Scholar 

  22. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  23. Oliveira-Brochado, A., Martins, F.V.: Assessing the number of components in mixture models: a review. Technical report, Universidade do Porto, Faculdade de Economia do Porto (2005)

    Google Scholar 

  24. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted Gaussian mixture models. Digit. Signal Proc. 10(1–3), 19–41 (2000)

    Article  Google Scholar 

  25. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)

    Article  Google Scholar 

  26. Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)

    Article  Google Scholar 

  27. Srinivasan, B.V., Zotkin, D.N., Duraiswami, R.: A partial least squares framework for speaker recognition. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP. Institute of Electrical and Electronics Engineers (IEEE), May 2011

    Google Scholar 

  28. Tadjudin, S., Landgrebe, D.A.: Covariance estimation for limited training samples. In: 1998 Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 1998, vol. 5, pp. 2688–2690. IEEE (1998)

    Google Scholar 

  29. Valero, S., Salembier, P., Chanussot, J.: Hyperspectral image representation and processing with binary partition trees. IEEE Trans. Image Process. 22(4), 1430–1443 (2013)

    Article  MathSciNet  Google Scholar 

  30. Vatsavai, R.R., Shekhar, S., Burk, T.E.: A semi-supervised learning method for remote sensing data mining. In: 2005 Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2005, IEEE (2005). 5 pp

    Google Scholar 

  31. Xu, M., Zhou, X., Li, Z., Dai, B., Huang, T.S.: Extended hierarchical Gaussianization for scene classification. In: 2010 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, pp. 1837–1840, September 2010

    Google Scholar 

  32. Xu, X., Li, J., Huang, X., Dalla Mura, M., Plaza, A.: Multiple morphological component analysis based decomposition for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54(5), 3083–3102 (2016)

    Article  Google Scholar 

  33. Zapata-Zapata, G.J., Arias-Londoño, J.D., Vargas-Bonilla, J.F., Orozco-Arroyave, J.R.: On-line signature verification using gaussian mixture models and small-sample learning strategies. Revista Facultad de Ingeniería Universidad de Antioquia 79, 86–97 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AmirAbbas Davari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Davari, A., Christlein, V., Vesal, S., Maier, A., Riess, C. (2017). GMM Supervectors for Limited Training Data in Hyperspectral Remote Sensing Image Classification. In: Felsberg, M., Heyden, A., Krüger, N. (eds) Computer Analysis of Images and Patterns. CAIP 2017. Lecture Notes in Computer Science(), vol 10425. Springer, Cham. https://doi.org/10.1007/978-3-319-64698-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64698-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64697-8

  • Online ISBN: 978-3-319-64698-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics