[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10424))

Included in the following conference series:

Abstract

We present an efficient algorithm to compute Euler characteristic curves of gray scale images of arbitrary dimension. In various applications the Euler characteristic curve is used as a descriptor of an image.

Our algorithm is the first streaming algorithm for Euler characteristic curves. The usage of streaming removes the necessity to store the entire image in RAM. Experiments show that our implementation handles terabyte scale images on commodity hardware. Due to lock-free parallelism, it scales well with the number of processor cores.

Additionally, we put the concept of the Euler characteristic curve in the wider context of computational topology. In particular, we explain the connection with persistence diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The astrophysics community refers to the Euler characteristic curve as the genus.

  2. 2.

    We review related work at the end of the paper.

  3. 3.

    We thank Reinhold Erben and Stephan Handschuh from Vetmeduni Vienna for providing micro-CT scans of rat vertebrae.

  4. 4.

    The second condition is implied by the first condition since we allow only consecutive integers as interval endpoints in the definition of cells.

  5. 5.

    Throughout this paper we use “voxel” as multidimensional generalization of “pixel”.

  6. 6.

    Another interpretation of voxel data is via the dual complex (voxels become vertices) using the lower star filtration. The way we use appears more natural in image processing context. The two approaches yield similar but not necessarily identical Euler characteristic curves.

  7. 7.

    Defining cells as products of closed intervals implies \((3^d-1)\)-connectivity for the voxels of the thresholded images. This corresponds to 8-connectivity for 2D images.

  8. 8.

    where \(\chi \left( \tilde{f}^{-1}\left( \left( -\infty ,-1\right] \right) \right) =\chi (\emptyset )=0\).

  9. 9.

    In lexicographical order a voxel at position \((i_1,\dots ,i_d)\) succeeds a voxel at position \((j_1,\dots ,j_d)\) if \(i_k>j_k\) for the first k where \(i_k\) and \(j_k\) differ.

  10. 10.

    The input size is \(\log _2(m)n\).

  11. 11.

    Most of the images are available at www.byclb.com/TR/Muhendislik/Dataset.aspx.

References

  1. Bauer, U., Kerber, M., Reininghaus, J.: Distributed computation of persistent homology. In: 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 31–38. SIAM (2014)

    Google Scholar 

  2. Colley, W.N., Richard Gott III, J.: Genus topology of the cosmic microwave background from WMAP. Mon. Not. R. Astron. Soc. 344(3), 686–695 (2003)

    Article  Google Scholar 

  3. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  4. Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Skeletonization and partitioning of digital images using discrete morse theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 654–666 (2015)

    Article  Google Scholar 

  5. Dyer, C.R.: Computing the euler number of an image from its quadtree. Comput. Graph. Image Process. 13(3), 270–276 (1980)

    Article  Google Scholar 

  6. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010)

    Google Scholar 

  7. Gonzalez, R., Wintz, P.: Digital Image Processing. Addison-Wesley Publishing Co. Inc., Reading (1977)

    MATH  Google Scholar 

  8. Gray, S.B.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 100(5), 551–561 (1971)

    Article  MATH  Google Scholar 

  9. Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D Morse–Smale complexes and persistent homology using discrete Morse theory. Vis. Comput. 28(10), 959–969 (2012). Springer

    Google Scholar 

  10. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer, New York (2004)

    Book  MATH  Google Scholar 

  11. Odgaard, A., Gundersen, H.: Quantification of connectivity in cancellous bone, with special emphasis on 3-d reconstructions. Bone 14(2), 173–182 (1993)

    Article  Google Scholar 

  12. Pikaz, A., Averbuch, A.: An efficient topological characterization of gray-levels textures, using a multiresolution representation. Graph. Models Image Process. 59(1), 1–17 (1997)

    Article  Google Scholar 

  13. Rhoads, J.E., Gott, J.R., Postman, M.: The genus curve of the abell clusters. Astrophys. J. 421, 1–8 (1994)

    Article  Google Scholar 

  14. Richardson, E., Werman, M.: Efficient classification using the euler characteristic. Pattern Recognit. Lett. 49, 99–106 (2014)

    Article  Google Scholar 

  15. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)

    Article  Google Scholar 

  16. Saha, P.K., Chaudhuri, B.B.: A new approach to computing the euler characteristic. Pattern Recognit. 28(12), 1955–1963 (1995)

    Article  MathSciNet  Google Scholar 

  17. Ségonne, F., Pacheco, J., Fischl, B.: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans. Med. Imaging 26(4), 518–529 (2007)

    Article  Google Scholar 

  18. Snidaro, L., Foresti, G.: Real-time thresholding with euler numbers. Pattern Recognit. Lett. 24(9–10), 1533–1544 (2003)

    Article  MATH  Google Scholar 

  19. Sossa-Azuela, J.H., et al.: On the computation of the euler number of a binary object. Pattern Recognit. 29(3), 471–476 (1996)

    Article  Google Scholar 

  20. Verri, A., Uras, C., Frosini, P., Ferri, M.: On the use of size functions for shape analysis. Biol. Cybern. 70(2), 99–107 (1993)

    Article  MATH  Google Scholar 

  21. Wagner, H., Chen, C., Vuçini, E.: Efficient computation of persistent homology for cubical data. In: Workshop on Topology-based Methods in Data Analysis and Visualization (2011)

    Google Scholar 

  22. Ziou, D., Allili, M.: Generating cubical complexes from image data and computation of the euler number. Pattern Recognit. 35(12), 2833–2839 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Heiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Heiss, T., Wagner, H. (2017). Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images. In: Felsberg, M., Heyden, A., Krüger, N. (eds) Computer Analysis of Images and Patterns. CAIP 2017. Lecture Notes in Computer Science(), vol 10424. Springer, Cham. https://doi.org/10.1007/978-3-319-64689-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64689-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64688-6

  • Online ISBN: 978-3-319-64689-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics