Abstract
HCI technology improves human-computer interaction. Such communication can be carried out with the use of emotions that are visible on the human face since birth [1]. In this paper the Emotion system for detecting and recognizing facial expressions, developed in the MSc work [2], is presented. The system recognizes emotion from webcam video in real time. It is based on color segmentation and morphological operations. The system uses a cascade of boosted classifiers based on Haar-like features, to locate the face and to reduce the searched area for characteristic points. For identification purposes, the Emotion system uses an expanded action unit EAU, based on a facial action coding system, FACS [3, 4].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lyons, M.J., Bartneck, C.: HCI and the face. HCI (2006)
Chudziak, P.: Analiza ekspresji mimiki ludzkiej twarzy za pomocą komputera. Master thesis (under the supervision of Prof. Z. Kowalczuk), Politechnika Gdańska (2015)
Ekman, P., Friesen, W.V.: Manual for the Facial Action Coding System. Consulting Psychologists Press (1977)
Ekman, P., Friesen, W.V., Hager, J.C.: Facial Action Coding System Investigator’s Guide. A Human Face, Salt Lake City (2002)
Darwin, C.: The Descent of Man, and Selection in Relation to Sex. John Murray (1871)
Ekman, P.: Facial expressions. Handbook of Cognition and Emotion. John Wiley & Sons Ltd., Sussex, U.K (1999)
Mehrabian, A., Wiener, M.: Decoding of inconsistent communications. J. Pers. Soc. Psychol. 6(1), 109–114 (1967)
Mehrabian, A., Ferris, S.R.: Inference attitudes from nonverbal communication in two channels. J. Consult. Psychol. 31(3), 248–252 (1967)
Mehrabian, A.: Silent Messages: Implicit Communication of Emotions and Attitudes. Wadsworth, Belmont (1981)
Goleman, D.: Emotional Intelligence. Bantam Books, New York (1995)
Przybyło, J.: Automatyczne rozpoznawanie elementów mimiki w obrazie twarzy i analiza ich przydatności do sterowania. Akademia Górniczo-Hutniczna im. St. Staszica, Kraków (2008)
Kanade, T., Cohn, J. F.: Cohn-Kanade AU-Coded Facial Expression Database. Robotics Institute, Carnegie Mellon University (2000)
Wilson, P.I., Fernandez, J.: Facial Feature Detection using Haar Classifiers. Consortium for Computing Sciences in Colleges (2006)
Gupta, K.D.: Pupil or eyeball detection and extraction from eye image using C#. Code Project (2010)
Kubanek, M.: Metoda rozpoznawania audio-wideo mowy polskiej w oparciu o ukryte modele markowa. Ph.D. thesis. Politechnika Częstochowska (2005)
Sohail, A.S.M., Bhattacharya, P.: Detection of facial feature points using anthropometric face model. In: Signal Processing for Image Enhancement and Multimedia Processing, vol. 31, pp. 189–200 (2006)
Friesen, W.; Ekman, P.: EMFACS-7: Emotional Facial Action Coding System. Unpublished manual. University of California, California (1983)
Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expression analysis. In: Proceedings of FGR 2000 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Kowalczuk, Z., Chudziak, P. (2018). Identification of Emotions Based on Human Facial Expressions Using a Color-Space Approach. In: Kościelny, J., Syfert, M., Sztyber, A. (eds) Advanced Solutions in Diagnostics and Fault Tolerant Control. DPS 2017. Advances in Intelligent Systems and Computing, vol 635. Springer, Cham. https://doi.org/10.1007/978-3-319-64474-5_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-64474-5_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64473-8
Online ISBN: 978-3-319-64474-5
eBook Packages: EngineeringEngineering (R0)