[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

MULDER: Querying the Linked Data Web by Bridging RDF Molecule Templates

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10438))

Included in the following conference series:

  • 1365 Accesses

Abstract

The increasing number of RDF data sources that allow for querying Linked Data via Web services form the basis for federated SPARQL query processing. Federated SPARQL query engines provide a unified view of a federation of RDF data sources, and rely on source descriptions for selecting the data sources over which unified queries will be executed. Albeit efficient, existing federated SPARQL query engines usually ignore the meaning of data accessible from a data source, and describe sources only in terms of the vocabularies utilized in the data source. Lack of source description may conduce to the erroneous selection of data sources for a query, thus affecting the performance of query processing over the federation. We tackle the problem of federated SPARQL query processing and devise MULDER, a query engine for federations of RDF data sources. MULDER describes data sources in terms of RDF molecule templates, i.e., abstract descriptions of entities belonging to the same RDF class. Moreover, MULDER utilizes RDF molecule templates for source selection, and query decomposition and optimization. We empirically study the performance of MULDER on existing benchmarks, and compare MULDER performance with state-of-the-art federated SPARQL query engines. Experimental results suggest that RDF molecule templates empower MULDER federated query processing, and allow for the selection of RDF data sources that not only reduce execution time, but also increase answer completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/EIS-Bonn/MULDER.

References

  1. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6_2

    Chapter  Google Scholar 

  2. Alexander, K., Hausenblas, M.: Describing linked datasets-on the design and usage of voiD, the ‘vocabulary of interlinked datasets’. In: LDOW (2009)

    Google Scholar 

  3. Basca, C., Bernstein, A.: Querying a messy web of data with avalanche. J. Web Semant. 26, 1–28 (2014)

    Article  Google Scholar 

  4. Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID descriptions. In: COLD (2011)

    Google Scholar 

  5. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.: Decomposing federated queries in presence of replicated fragments. J. Web Semant. 42, 1–18 (2017)

    Article  Google Scholar 

  7. Palma, G., Vidal, M.-E., Raschid, L.: Drug-target interaction prediction using semantic similarity and edge partitioning. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 131–146. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9_9

    Google Scholar 

  8. Saleem, M., Khan, Y., Hasnain, A., Ermilov, I., Ngomo, A.N.: A fine-grained evaluation of SPARQL endpoint federation systems. Semant. Web 7(5), 493–518 (2015)

    Article  Google Scholar 

  9. Saleem, M., Ngonga Ngomo, A.-C.: HiBISCuS: hypergraph-based source selection for SPARQL endpoint federation. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 176–191. Springer, Cham (2014). doi:10.1007/978-3-319-07443-6_13

    Chapter  Google Scholar 

  10. Scheufele, W., Moerkotte, G.: On the complexity of generating optimal plans with cross products. In: 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 238–248 (1997)

    Google Scholar 

  11. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench: a benchmark suite for federated semantic data query processing. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6_37

    Chapter  Google Scholar 

  12. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6_38

    Chapter  Google Scholar 

  13. Verborgh, R., Sande, M.V., Hartig, O., Herwegen, J.V., Vocht, L.D., Meester, B.D., Haesendonck, G., Colpaert, P.: Triple pattern fragments: a low-cost knowledge graph interface for the web. J. Web Semant. 37, 184–206 (2016)

    Article  Google Scholar 

  14. Vidal, M., Castillo, S., Acosta, M., Montoya, G., Palma, G.: On the selection of SPARQL endpoints to efficiently execute federated SPARQL queries. Trans. Large-Scale Data Knowl.-Cent. Syst. 25, 109–149 (2016)

    Article  Google Scholar 

  15. Wylot, M., Cudré-Mauroux, P.: DiploCloud: efficient and scalable management of RDF data in the cloud. IEEE Trans. Knowl. Data Eng. 28(3), 659–674 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 642795 (WDAqua) and the EU H2020 programme for the project BigDataEurope (GA 644564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Galkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Endris, K.M., Galkin, M., Lytra, I., Mami, M.N., Vidal, ME., Auer, S. (2017). MULDER: Querying the Linked Data Web by Bridging RDF Molecule Templates. In: Benslimane, D., Damiani, E., Grosky, W., Hameurlain, A., Sheth, A., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2017. Lecture Notes in Computer Science(), vol 10438. Springer, Cham. https://doi.org/10.1007/978-3-319-64468-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64468-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64467-7

  • Online ISBN: 978-3-319-64468-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics