[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Deterministic Identity-Based Encryption from Lattices with More Compact Public Parameters

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10418))

Included in the following conference series:

  • 932 Accesses

Abstract

Xie et al. (SCN 2012) proposed the first deterministic identity-based encryption (DIBE) scheme with an adaptive security in the auxiliary-input setting, under the learning with errors (LWE) assumption. However, the master public key consists of \(\mathcal {O}(\lambda )\) number of basic matrices.

  • In this paper, we consider to construct adaptively secure DIBE schemes from partitioning functions (IACR’17). By instantiating the DIBE construction with two partitioning functions, we get two DIBE schemes in which the master public key consists of \(\mathcal {O}(\log ^3 \lambda )\) (respectively, \(\mathcal {O}(\log ^2 \lambda )\)) number of basic matrices in the first (respectively, the second) DIBE scheme.

  • We also change the identity-based encryption (IBE) scheme of Yamada16 (Eurocrypt’16) to construct DIBE scheme with the same security from the LWE problem. And the master public key consists of \(\mathcal {O}(\lambda ^{1/d})\) number of basic matrices, where \(d\ge 2\) is a flexible integer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_28

    Chapter  Google Scholar 

  2. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). doi:10.1007/3-540-48523-6_1

    Chapter  Google Scholar 

  3. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS 2009, pp. 75–86 (2009)

    Google Scholar 

  4. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor functions and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_15

    Chapter  Google Scholar 

  5. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9_9

    Chapter  Google Scholar 

  6. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  7. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Escala, A., Herranz, J., Libert, B., Ràfols, C.: Identity-based lossy trapdoor functions: new definitions, hierarchical extensions, and implications. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 239–256. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0_14

    Chapter  Google Scholar 

  9. Fang, F., Li, B., Xianhui, L., Liu, Y., Jia, D., Xue, H.: (Deterministic) Hierarchical identity-based encryption from learning with rounding over small modulus. In: AsiaCCS 2016, pp. 907–912 (2016)

    Google Scholar 

  10. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: ICS 2010, pp. 230–240 (2010)

    Google Scholar 

  11. Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 121–143. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7_5

    Chapter  Google Scholar 

  12. Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more compact ibes from ideal lattices and bilinear maps. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 682–712. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53890-6_23

    Chapter  Google Scholar 

  13. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  14. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93 (2005)

    Google Scholar 

  15. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  16. Xie, X., Xue, R., Zhang, R.: Deterministic public key encryption and identity-based encryption from lattices in the auxiliary-input setting. In: Visconti, I., Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 1–18. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32928-9_1

    Chapter  Google Scholar 

  17. Yamada, S.: Adaptively secure identity-based encryption from lattices with asymptotically shorter public parameters. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 32–62. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5_2

    Chapter  Google Scholar 

  18. Yamada, S.: Asymptotically compact adaptively secure lattice ibes and verifiable random functions via generalized partitioning techniques. Cryptology ePrint Archive, Report 2017/096 (2017). http://eprint.iacr.org/2017/096

  19. Zhang, J., Chen, Y., Zhang, Z.: Programmable hash functions from lattices: short signatures and IBEs with small key sizes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 303–332. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53015-3_11

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank the anonymous IWSEC’2017 reviewers for their helpful comments. This work is supported by the Foundation of Science and Technology on Communication Security Laboratory (9140C110206150C11049) and the National Nature Science Foundation of China (No.61379137, No.61502480, No.61572495, No.61602473).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyang Fang .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Homomorphic Computation. In [17], Yamada introduced the following function \(\textsf {PubEval}_{d}:(\mathbb {Z}_{q}^{n\times m})^d\rightarrow \mathbb {Z}_{q}^{n\times m}\) which takes a set of matrices \(\mathbf {B}_{1},\cdots ,\mathbf {B}_{d}\) as inputs and outputs a matrix in \(\mathbb {Z}_{q}^{n\times m}\).

$$\textsf {PubEval}_{d}(\mathbf {B}_{1},\cdots ,\mathbf {B}_{d})= {\left\{ \begin{array}{ll} \mathbf {B}_{1} &{} d=1\\ \mathbf {B}_{1}\cdot \mathbf {G}^{-1}(\textsf {PubEval}_{d-1}(\mathbf {B}_{2},\cdots ,\mathbf {B}_{d})) &{} d\ge 2 \end{array}\right. }$$

In Sect. 3.2, in order to prove Eq. (1), we will use Lemma 28 in the full version of the work [1], which is described as follows.

Lemma 5

([1]). Let \(I^{*}\) be a \(Q+1\)-ID tuple \(\{id^{*},\{id_{j}\}_{j\in [Q]}\}\) denoted the challenge ID along with the queried ID’s, and \(\eta (I^{*})\) define the probability that an abort does not happen in \(\mathbf {Game_{2}}\). Let \(\gamma _{\mathrm {max}}=\mathsf {max}~\gamma (I^{*})\) and \(\gamma _{\mathrm {min}}=\mathsf {min}~\gamma (I^{*})\). For \(i=1,2\), we set \(X_{i}\) be the event that \(\widehat{\mathsf {coin}}=\mathsf {coin}\) at the end of \(\mathbf {Game_{i}}\). Then,

$$\left| \Pr [X_{2}]-\frac{1}{2}\right| \ge \gamma _{\mathrm {min}}\left| \Pr [X_{1}]-\frac{1}{2}\right| -\frac{1}{2}(\gamma _{\mathrm {max}}-\gamma _{\mathrm {min}}).$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, D., Fang, F., Li, B., Wang, X. (2017). Deterministic Identity-Based Encryption from Lattices with More Compact Public Parameters. In: Obana, S., Chida, K. (eds) Advances in Information and Computer Security. IWSEC 2017. Lecture Notes in Computer Science(), vol 10418. Springer, Cham. https://doi.org/10.1007/978-3-319-64200-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64200-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64199-7

  • Online ISBN: 978-3-319-64200-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics