[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Personality-Dependent Referring Expression Generation

  • Conference paper
  • First Online:
Text, Speech, and Dialogue (TSD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10415))

Included in the following conference series:

Abstract

This paper addresses the issue of how Big Five personality traits may influence the content selection task in Referring Expression generation (REG.) To this end, we build a corpus of referring expressions annotated with personality information, and then use it as the input to a machine learning approach to REG that takes the personality of the target speakers into account. Results show that personality-dependent REG outperforms standard REG algorithms, and that it may be a viable alternative to speaker-dependent approaches that require examples of descriptions produced by every individual under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Stimulus images courtesy of Michael J. Tarr, Center for the Neural Basis of Cognition and Department of Psychology, Carnegie Mellon Univ. Funding provided by NSF award 0339122.

  2. 2.

    The use of frequency estimates in DT-b5 may in principle defeat the purpose of not relying on pre-recorded examples of referring expressions. In the current DT-b5 implementation, however, these features were included only as a means to provide a meaningful comparison with DT-scene, and could in principle be replaced by a more realistic account of salience.

References

  1. Righi, G., Peissig, J.J., Tarr, M.J.: Recognizing disguised faces. Vis. Cogn. 20(2), 143–169 (2012)

    Article  Google Scholar 

  2. Bohnet, B.: The fingerprint of human referring expressions and their surface realization with graph transducers. In: INLG-2008, Stroudsburg, USA, pp. 207–210 (2008)

    Google Scholar 

  3. Fabbrizio, G.D., Stent, A.J., Bangalore, S.: Trainable speaker-based referring expression generation. In: CoNLL 2008, Stroudsburg, PA, USA, pp. 151–158 (2008)

    Google Scholar 

  4. Viethen, J., Dale, R.: Speaker-dependent variation in content selection for referring expression generation. In: Australasian Language Technology Association WS, pp. 81–89 (2010)

    Google Scholar 

  5. Ferreira, T.C., Paraboni, I.: Referring expression generation: taking speakers’ preferences into account. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2014. LNCS, vol. 8655, pp. 539–546. Springer, Cham (2014). doi:10.1007/978-3-319-10816-2_65

    Google Scholar 

  6. dos Santos Silva, D., Paraboni, I.: Generating spatial referring expressions in interactive 3D worlds. Spat. Cogn. Comput. 15(03), 186–225 (2015)

    Google Scholar 

  7. Krahmer, E., van Deemter, K.: Computational generation of referring expressions: a survey. Comput. Linguis. 38(1), 173–218 (2012)

    Article  Google Scholar 

  8. Dale, R., Reiter, E.: Computational interpretations of the Gricean maxims in the generation of referring expressions. Cogn. Sci. 19(2), 233–263 (1995)

    Article  Google Scholar 

  9. John, O.P., Donahue, E.M., Kentle, R.L.: The big five inventory - versions 4a and 54. University of California, Berkeley, CA, Technical report (1991)

    Google Scholar 

  10. Iacobelli, F., Gill, A.J., Nowson, S., Oberlander, J.: Large scale personality classification of bloggers. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011. LNCS, vol. 6975, pp. 568–577. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24571-8_71

    Chapter  Google Scholar 

  11. Mairesse, F., Walker, M.A.: Controlling user perceptions of linguistic style: trainable generation of personality traits. Comput. Linguist. 37(3), 455–488 (2011)

    Article  Google Scholar 

  12. Gatt, A., van der Sluis, I., van Deemter, K.: Evaluating algorithms for the generation of referring expressions using a balanced corpus. In: Proceedings of ENLG-07 (2007)

    Google Scholar 

  13. Teixeira, C.V.M., Paraboni, I., da Silva, A.S.R., Yamasaki, A.K.: Generating relational descriptions involving mutual disambiguation. In: Gelbukh, A. (ed.) CICLing 2014. LNCS, vol. 8403, pp. 492–502. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54906-9_40

    Chapter  Google Scholar 

  14. Paraboni, I., Galindo, M., Iacovelli, D.: Stars2: a corpus of object descriptions in a visual domain. Lang. Res. Eval. 51(2), 495–524 (2016)

    Google Scholar 

  15. Paraboni, I., Lan, A.G.J., de Sant’Ana, M.M., Coutinho, F.L.: Effects of cognitive effort on the resolution of over specified descriptions. Comput. Linguist. 43(2), 273–310 (2017)

    Google Scholar 

  16. Ferreira, T.C., Paraboni, I.: Classification-based referring expression generation. In: Gelbukh, A. (ed.) CICLing 2014. LNCS, vol. 8403, pp. 481–491. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54906-9_39

    Chapter  Google Scholar 

  17. Dale, R.: Cooking up referring expressions. In: Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, pp. 68–75 (2002)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by FAPESP grant 2016/14223-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivandré Paraboni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Paraboni, I., Monteiro, D.S., Lan, A.G.J. (2017). Personality-Dependent Referring Expression Generation. In: Ekštein, K., Matoušek, V. (eds) Text, Speech, and Dialogue. TSD 2017. Lecture Notes in Computer Science(), vol 10415. Springer, Cham. https://doi.org/10.1007/978-3-319-64206-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64206-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64205-5

  • Online ISBN: 978-3-319-64206-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics