[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Guarding Orthogonal Polygons with Sliding Cameras

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10167))

Included in the following conference series:

Abstract

A sliding camera inside an orthogonal polygon P is a point guard that travels back and forth along an orthogonal line segment \(\gamma \) in P. The sliding camera g can see a point p in P if the perpendicular from p onto \(\gamma \) is inside P. In this paper, we give the first constant-factor approximation algorithm for the problem of guarding P with the minimum number of sliding cameras. Next, we show that the sliding guards problem is linear-time solvable if the (suitably defined) dual graph of the polygon has bounded treewidth. On the other hand, we show that the problem is NP-hard on orthogonal polygons with holes even if only horizontal cameras are allowed. Finally, we study art gallery theorems for sliding cameras, thus, give upper and lower bounds in terms of the number of sliding cameras needed relative to the number of vertices n.

T. Biedl and T.M. Chan—Research of the authors is supported by NSERC.

F. Montecchiani—Research of the author supported in part by the MIUR project AMANDA, prot. 2012C4E3KT_001. Research was done while the author was visiting the University of Waterloo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, A.: The art gallery theorem: its variations, applications and algorithmic aspects. Ph.D. thesis, Johns Hopkins University, A summary can be found in [27], Chap. 3 (1984)

    Google Scholar 

  2. Avis, D., Toussaint, G.T.: An optimal algorithm for determining the visibility of a polygon from an edge. IEEE Trans. Comput. 30(12), 910–914 (1981)

    Article  MathSciNet  Google Scholar 

  3. Baker, B.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Berg, M., Durocher, S., Mehrabi, S.: Guarding monotone art galleries with sliding cameras in linear time. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 113–125. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12691-3_10

    Google Scholar 

  5. Biedl, T., Mehrabi, S.: On r-guarding thin orthogonal polygons. In: 27th International Symposium on Algorithms and Computation (ISAAC 2016), LIPIcs, vol. 64, pp. 17:1–17:13 (2016)

    Google Scholar 

  6. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discret. Comput. Geom. 14(4), 463–479 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory Ser. B 18, 39–41 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarkson, K.L., Varadarajan, K.R.: Improved approximation algorithms for geometric set cover. Discret. Comput. Geom. 37(1), 43–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Mark, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  11. Durocher, S., Filtser, O., Fraser, R., Mehrabi, A.D., Mehrabi, S.: A (7/2)-approximation algorithm for guarding orthogonal art galleries with sliding cameras. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 294–305. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54423-1_26

    Chapter  Google Scholar 

  12. Durocher, S., Mehrabi, S.: Guarding orthogonal art galleries using sliding cameras: algorithmic and hardness results. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 314–324. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40313-2_29

    Chapter  Google Scholar 

  13. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31(1), 79–113 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem in NP-complete. SIAM J. Appl. Math. 32, 826–834 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoffmann, F., Kaufmann, M., Kriegel, K.: The art gallery theorem for polygons with holes. In: Proceedings of Foundations of Computer Science (FOCS 1991), pp. 39–48 (1991)

    Google Scholar 

  16. Kahn, J., Klawe, M.M., Kleitman, D.J.: Traditional galleries require fewer watchmen. SIAM J. Algebraic Discrete Methods 4(2), 194–206 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Katz, M.J., Mitchell, J.S.B., Nir, Y.: Orthogonal segment stabbing. Comput. Geom. 30(2), 197–205 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Katz, M.J., Morgenstern, G.: Guarding orthogonal art galleries with sliding cameras. Int. J. Comput. Geom. Appl. 21(2), 241–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Katz, M.J., Roisman, G.S.: On guarding the vertices of rectilinear domains. Comput. Geom. 39(3), 219–228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kirkpatrick, D.G.: An \(O(\lg \lg opt)\)-approximation algorithm for multi-guarding galleries. Discrete Comput. Geom. 53(2), 327–343 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Krohn, E., Nilsson, B.J.: Approximate guarding of monotone and rectilinear polygons. Algorithmica 66(3), 564–594 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 32(2), 276–282 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lubiw, A.: Decomposing polygonal regions into convex quadrilaterals. In: Proceedings of the ACM Symposium on Computational Geometry (SoCG 1985), pp. 97–106 (1985)

    Google Scholar 

  24. Mehrabi, S.: Geometric optimization problems on orthogonal polygons: hardness results and approximation algorithms. Ph.D. thesis, University of Manitoba, Winnipeg, Canada, August 2015

    Google Scholar 

  25. O’Rourke, J.: The complexity of computing minimum convex covers for polygons. In: 20th Allerton Conference Communication, Control, and Computing, pp. 75–84 (1982)

    Google Scholar 

  26. O’Rourke, J.: Galleries need fewer mobile guards: a variation to Chvátal’s theorem. Geom. Dedicata 14, 273–283 (1983)

    MathSciNet  MATH  Google Scholar 

  27. O’Rourke, J.: Art Gallery Theorems and Algorithms. The International Series of Monographs on Computer Science. Oxford University Press, New York (1987)

    MATH  Google Scholar 

  28. Schuchardt, D., Hecker, H.: Two NP-hard art-gallery problems for ortho-polygons. Math. Logic Q. 41(2), 261–267 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tamassia, R., Tollis, I.: A unified approach a visibility representation of planar graphs. Discrete Comput. Geom. 1, 321–341 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tomás, A.P.: Guarding thin orthogonal polygons is hard. In: Gąsieniec, L., Wolter, F. (eds.) FCT 2013. LNCS, vol. 8070, pp. 305–316. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40164-0_29

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mehrabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Biedl, T., Chan, T.M., Lee, S., Mehrabi, S., Montecchiani, F., Vosoughpour, H. (2017). On Guarding Orthogonal Polygons with Sliding Cameras. In: Poon, SH., Rahman, M., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2017. Lecture Notes in Computer Science(), vol 10167. Springer, Cham. https://doi.org/10.1007/978-3-319-53925-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53925-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53924-9

  • Online ISBN: 978-3-319-53925-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics