[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Time Complexity of the Token Swapping Problem and Its Parallel Variants

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10167))

Included in the following conference series:

Abstract

The token swapping problem (TSP) and its colored version are reconfiguration problems on graphs. This paper is concerned with the complexity of the TSP and two new variants; namely parallel TSP and parallel colored TSP. For a given graph where each vertex has a unique token on it, the TSP requires to find a shortest way to modify a token placement into another by swapping tokens on adjacent vertices. In the colored version, vertices and tokens are colored and the goal is to relocate tokens so that each vertex has a token of the same color. Their parallel versions allow simultaneous swaps on non-incident edges in one step. We investigate the time complexity of several restricted cases of those problems and show when those problems become tractable and remain intractable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    No salesman is traveling in this paper.

References

  1. Bitton, D., DeWitt, D.J., Hsiao, D.K., Menon, J.: A taxonomy of parallel sorting. ACM Comput. Surv. 16(3), 287–318 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonnet, É., Miltzow, T., Rzążewski, P.: Complexity of Token Swapping and Its Variants. CoRR, abs/1607.07676 (2016)

    Google Scholar 

  3. Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  4. Even, S., Goldreich, O.: The minimum-length generator sequence problem is NP-hard. J. Algorithms 2(3), 311–313 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  6. Heath, L.S., Vergara, J.P.C.: Sorting by short swaps. J. Comput. Biol. 10(5), 775–789 (2003)

    Article  Google Scholar 

  7. Jerrum, M.: The complexity of finding minimum-length generator sequences. Theor. Comput. Sci. 36, 265–289 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) The Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Heidelberg (1972)

    Chapter  Google Scholar 

  9. Kawahara, J., Saitoh, T., Yoshinaka, R.: A note on the complexity of the token swapping problem. IPSJ SIG Technical report, 2015-AL-156(3), 1–7 January 2016 (in Japanese)

    Google Scholar 

  10. Kawahara, J., Saitoh, T., Yoshinaka, R.: The time complexity of the token swapping problem and its parallel variants. CoRR, abs/1612.02948 (2016)

    Google Scholar 

  11. Miltzow, T., Narrins, L., Okamoto, Y., Rote, G., Thomas, A., Uno, T.: Approximation, hardness of token swapping. In: ESA, pp. 66:1–66:15 (2016)

    Google Scholar 

  12. Petersen, T.K., Tenner, B.E.; How to write a permutation as a product of involutions (and why you might care). Integers 13 (2013). Paper No. A63

    Google Scholar 

  13. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yamanaka, K., Demaine, E.D., Ito, T., Kawahara, J., Kiyomi, M., Okamoto, Y., Saitoh, T., Suzuki, A., Uchizawa, K., Uno, T.: Swapping labeled tokens on graphs. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) Fun with Algorithms. LNCS, vol. 8496, pp. 364–375. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07890-8_31

    Chapter  Google Scholar 

  15. Yamanaka, K., Horiyama, T., Kirkpatrick, D., Otachi, Y., Saitoh, T., Uehara, R., Uno, Y.: Swapping colored tokens on graphs. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 619–628. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21840-3_51

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Yoshinaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kawahara, J., Saitoh, T., Yoshinaka, R. (2017). The Time Complexity of the Token Swapping Problem and Its Parallel Variants. In: Poon, SH., Rahman, M., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2017. Lecture Notes in Computer Science(), vol 10167. Springer, Cham. https://doi.org/10.1007/978-3-319-53925-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53925-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53924-9

  • Online ISBN: 978-3-319-53925-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics