[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

User Control in Recommender Systems: Overview and Interaction Challenges

  • Conference paper
  • First Online:
E-Commerce and Web Technologies (EC-Web 2016)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 278))

Included in the following conference series:

  • 1968 Accesses

Abstract

Recommender systems have shown to be valuable tools that help users find items of interest in situations of information overload. These systems usually predict the relevance of each item for the individual user based on their past preferences and their observed behavior. If the system’s assumption about the users’ preferences are however incorrect or outdated, mechanisms should be provided that put the user into control of the recommendations, e.g., by letting them specify their preferences explicitly or by allowing them to give feedback on the recommendations. In this paper we review and classify the different approaches from the research literature of putting the users into active control of what is recommended. We highlight the challenges related to the design of the corresponding user interaction mechanisms and finally present the results of a survey-based study in which we gathered user feedback on the implemented user control features on Amazon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In some rating-based systems users can update their ratings, which might however be tedious, and changes often have no immediate effect on the presented recommendations.

  2. 2.

    A translated version of the survey forms can be found at

    http://ls13-www.cs.tu-dortmund.de/homepage/publications/ec-web-2016/.

  3. 3.

    The participants could provide several reasons and the value 65% indicates that nearly two thirds of the users stated that the recommendations were inadequate.

References

  1. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: ICDM 2008, pp. 263–272 (2008)

    Google Scholar 

  2. Amatriain, X., Pujol, J.M., Tintarev, N., Oliver, N.: Rate it again: increasing recommendation accuracy by user re-rating. In: RecSys 2009, pp. 173–180 (2009)

    Google Scholar 

  3. Knijnenburg, B.P., Bostandjiev, S., O’Donovan, J., Kobsa, A.: Inspectability and control in social recommenders. In: RecSys 2012, pp. 43–50 (2012)

    Google Scholar 

  4. Dooms, S., De Pessemier, T., Martens, L.: Improving IMDb movie recommendations with interactive settings and filter. In: RecSys 2014 (2014)

    Google Scholar 

  5. McNee, S.M., Lam, S.K., Konstan, J.A., Riedl, J.: Interfaces for eliciting new user preferences in recommender systems. In: Brusilovsky, P., Corbett, A., Rosis, F. (eds.) UM 2003. LNCS (LNAI), vol. 2702, pp. 178–187. Springer, Heidelberg (2003). doi:10.1007/3-540-44963-9_24

    Chapter  Google Scholar 

  6. Xiao, B., Benbasat, I.: E-commerce product recommendation agents: use, characteristics, and impact. MIS Q. 31(1), 137–209 (2007)

    Google Scholar 

  7. Hijikata, Y., Kai, Y., Nishida, S.: The relation between user intervention and user satisfaction for information recommendation. In: SAC 2012, pp. 2002–2007. (2012)

    Google Scholar 

  8. Wasinger, R., Wallbank, J., Pizzato, L., Kay, J., Kummerfeld, B., Böhmer, M., Krüger, A.: Scrutable user models and personalised item recommendation in mobile lifestyle applications. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899, pp. 77–88. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38844-6_7

    Chapter  Google Scholar 

  9. Knijnenburg, B.P., Reijmer, N.J., Willemsen, M.C.: Each to his own: how different users call for different interaction methods in recommender systems. In: RecSys 2011, pp. 141–148 (2011)

    Google Scholar 

  10. Goker, M., Thompson, C.: The adaptive place advisor: a conversational recommendation system. In: 8th German Workshop on CBR, pp. 187–198 (2000)

    Google Scholar 

  11. Kobsa, A., Koenemann, J., Pohl, W.: Personalized hypermedia presentation techniques for improving online customer relationships. Knowl. Eng. Rev. 16(2), 111–155 (2001)

    Article  MATH  Google Scholar 

  12. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An integrated environment for the development of knowledge-based recommender applications. Int. J. Electron. Commer. 11(2), 11–34 (2006)

    Article  Google Scholar 

  13. Burke, R.D., Hammond, K.J., Young, B.C.: Knowledge-based navigation of complex information spaces. In: AAAI 1996, pp. 462–468 (1996)

    Google Scholar 

  14. Trewin, S.: Knowledge-based recommender systems. Encyclopedia Libr. Inf. Sci. 69, 180–200 (2000)

    Google Scholar 

  15. Swearingen, K., Sinha, R.: Beyond algorithms: an HCI perspective on recommender systems. In: ACM SIGIR Recommender Systems Workshop, pp. 1–11 (2001)

    Google Scholar 

  16. Schafer, J.B., Konstan, J.A., Riedl, J.: Meta-recommendation systems: user-controlled integration of diverse recommendations. In: CIKM 2002, pp. 43–51 (2002)

    Google Scholar 

  17. Schaffer, J., Höllerer, T., O’Donovan, J.: Hypothetical recommendation: a study of interactive profile manipulation behavior for recommender systems. In: FLAIRS 2015, pp. 507–512 (2015)

    Google Scholar 

  18. Bostandjiev, S., O’Donovan, J., Höllerer, T.: Tasteweights: a visual interactive hybrid recommender system. In: RecSys 2012, pp. 35–42 (2012)

    Google Scholar 

  19. Tintarev, N., Kang, B., Höllerer, T., O’Donovan, J.: Inspection mechanisms for community-based content discovery in microblogs. In: RecSys IntRS 2015 Workshop, pp. 21–28 (2015)

    Google Scholar 

  20. Tintarev, N., Masthoff, J.: A survey of explanations in recommender systems. In: IEEE ICDEW Data Engineering Workshop, pp. 801–810 (2007)

    Google Scholar 

  21. Jannach, D., Kreutler, G.: Rapid development of knowledge-based conversational recommender applications with Advisor Suite. J. Web Eng. 6(2), 165–192 (2007)

    Google Scholar 

  22. Lamche, B., Adıgüzel, U., Wörndl, W.: Interactive explanations in mobile shopping recommender systems. In: RecSys IntRS 2014 Workshop, pp. 14–21 (2014)

    Google Scholar 

  23. Czarkowski, M., Kay, J.: A scrutable adaptive hypertext. In: Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 384–387. Springer, Heidelberg (2002). doi:10.1007/3-540-47952-X_43

    Chapter  Google Scholar 

  24. Ekstrand, M.D., Kluver, D., Harper, F.M., Konstan, J.A.: Letting users choose recommender algorithms: an experimental study. In: RecSys 2015, pp. 11–18 (2015)

    Google Scholar 

  25. Parra, D., Brusilovsky, P., Trattner, C.: See what you want to see: visual user-driven approach for hybrid recommendation. In: IUI 2014, pp. 235–240 (2014)

    Google Scholar 

  26. Harper, F.M., Xu, F., Kaur, H., Condiff, K., Chang, S., Terveen, L.G.: Putting users in control of their recommendations. In: RecSys 2015, pp. 3–10 (2015)

    Google Scholar 

  27. Jameson, A., Schwarzkopf, E.: Pros and cons of controllability: an empirical study. In: Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 193–202. Springer, Heidelberg (2002). doi:10.1007/3-540-47952-X_21

    Chapter  Google Scholar 

  28. Kramer, T.: The effect of measurement task transparency on preference construction and evaluations of personalized recommendations. J. Mark. Res. 44(2), 224–233 (2007)

    Article  Google Scholar 

  29. Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends. User Model. User Adapt. Interact. 22(1–2), 125–150 (2012)

    Article  Google Scholar 

  30. Groh, G., Birnkammerer, S., Köllhofer, V.: Social recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems for the Social Web, pp. 3–42. Springer, New York (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Jugovac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jannach, D., Naveed, S., Jugovac, M. (2017). User Control in Recommender Systems: Overview and Interaction Challenges. In: Bridge, D., Stuckenschmidt, H. (eds) E-Commerce and Web Technologies. EC-Web 2016. Lecture Notes in Business Information Processing, vol 278. Springer, Cham. https://doi.org/10.1007/978-3-319-53676-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53676-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53675-0

  • Online ISBN: 978-3-319-53676-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics