Abstract
In this article, we consider a collection of geometric problems involving points colored by two colors (red and blue), referred to as bichromatic problems. The motivation behind studying these problems is two fold; (i) these problems appear naturally and frequently in the fields like Machine learning, Data mining, and so on, and (ii) we are interested in extending the algorithms and techniques for single point set (monochromatic) problems to bichromatic case. For all the problems considered in this paper, we design low polynomial time exact algorithms. These algorithms are based on novel techniques which might be of independent interest.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The red rectangle may contain blue points on its boundary.
References
Aggarwal, A., Suri, S.: Fast algorithms for computing the largest empty rectangle. In: SoCG, Waterloo, Canada, pp. 278–290 (1987)
Arkin, E.M., Banik, A., Carmi, P., Citovsky, G., Katz, M.J., Mitchell, J.S.B., Simakov, M.: Conflict-free covering. In: CCCG, Kingston, Ontario, Canada, 10–12 August 2015
Arkin, E.M., Banik, A., Carmi, P., Citovsky, G., Katz, M.J., Mitchell, J.S.B., Simakov, M.: Choice is hard. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 318–328. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0_28
Arkin, E.M., Díaz-Báñez, J.M., Hurtado, F., Kumar, P., Mitchell, J.S.B., Palop, B., Pérez-Lantero, P., Saumell, M., Silveira, R.I.: Bichromatic 2-center of pairs of points. Comput. Geom. 48(2), 94–107 (2015)
Armaselu, B., Daescu, O.: Maximum area rectangle separating red and blue points. In: CCCG 2016, British Columbia, Canada, 3–5 August 2016, pp. 244–251 (2016)
Aronov, B., Har-Peled, S.: On approximating the depth and related problems. SIAM J. Comput. 38(3), 899–921 (2008)
Backer, J., Keil, J.M.: The mono- and bichromatic empty rectangle and square problems in all dimensions. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 14–25. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12200-2_3
Backer, J., Mark Keil, J.: The bichromatic square and rectangle problems. Technical report 2009–01, University of Saskatchewan (2009)
Bar-Noy, A., Cheilaris, P., Smorodinsky, S.: Deterministic conflict-free coloring for intervals: from offline to online. ACM Trans. Algorithms 4(4), 44 (2008)
Biniaz, A., Bose, P., Maheshwari, A., Smid, M.: Plane bichromatic trees of low degree. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 68–80. Springer, Heidelberg (2016). doi:10.1007/978-3-319-44543-4_6
Biniaz, A., Maheshwari, A., Nandy, S.C., Smid, M.: An optimal algorithm for plane matchings in multipartite geometric graphs. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 66–78. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21840-3_6
Bitner, S., Cheung, Y.K., Daescu, O.: Minimum separating circle for bichromatic points in the plane. In: ISVD 2010, Quebec, Canada, June 28–30, 2010, pp. 50–55 (2010)
Chan, T.M.: Output-sensitive results on convex hulls, extreme points, and related problems. In: SOCG, Vancouver, B.C., Canada, 5–12 June 1995, pp. 10–19 (1995)
Chaudhuri, J., Nandy, S.C., Das, S.: Largest empty rectangle among a point set. J. Algorithms 46(1), 54–78 (2003)
Chazelle, B., (Scot) Drysdale III, R.L., Lee, D.T.: Computing the largest empty rectangle. SIAM J. Comput. 15(1), 300–315 (1986)
Cheilaris, P., Gargano, L., Rescigno, A.A., Smorodinsky, S.: Strong conflict-free coloring for intervals. Algorithmica 70(4), 732–749 (2014)
Chen, K., Fiat, A., Kaplan, H., Levy, M., Matousek, J., Mossel, E., Pach, J., Sharir, M., Smorodinsky, S., Wagner, U., Welzl, E.: Online conflict-free coloring for intervals. SIAM J. Comput. 36(5), 1342–1359 (2007)
Cortés, C., Díaz-Báñez, J.M., Pérez-Lantero, P., Seara, C., Urrutia, J., Ventura, I.: Bichromatic separability with two boxes: a general approach. J. Algorithms 64(2–3), 79–88 (2009)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: And Other Kernel-based Learning Methods. Cambridge University Press, New York (2000)
Dey, T.K.: Improved bounds on planar k-sets and k-levels. In: FOCS, Miami Beach, Florida, USA, 19–22 October 1997, pp. 156–161 (1997)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2000)
Eckstein, J., Hammer, P.L., Liu, Y., Nediak, M., Simeone, B.: The maximum box problem and its application to data analysis. Comp. Opt. Appl. 23(3), 285–298 (2002)
Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33(1), 94–136 (2003)
Goswami, P.P., Das, S., Nandy, S.C.: Triangular range counting query in 2d and its application in finding k nearest neighbors of a line segment. Comput. Geom. 29(3), 163–175 (2004)
Kaneko, A., Kano, M.: Discrete geometry on red and blue points in the plane a survey. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry, Algorithms and Combinatorics, vol. 25, pp. 551–570. Springer, Heidelberg (2003)
Katz, M.J., Lev-Tov, N., Morgenstern, G.: Conflict-free coloring of points on a line with respect to a set of intervals. Comput. Geom. 45(9), 508–514 (2012)
Liu, Y., Nediak, M.: Planar case of the maximum box and related problems. In: CCCG 2003, Halifax, Canada, 11–13 August 2003, pp. 14–18 (2003)
Naamad, A., Lee, D.T., Hsu, W.-L.: On the maximum empty rectangle problem. Discret. Appl. Math. 8(3), 267–277 (1984)
Orlowski, M.: A new algorithm for the largest empty rectangle problem. Algorithmica 5(1), 65–73 (1990)
Acknowledgements
We would like to thank an anonymous reviewer of an earlier version of this paper for suggestions that has helped us improve the running time of the algorithm for MaxCol.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bandyapadhyay, S., Banik, A. (2017). Polynomial Time Algorithms for Bichromatic Problems. In: Gaur, D., Narayanaswamy, N. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2017. Lecture Notes in Computer Science(), vol 10156. Springer, Cham. https://doi.org/10.1007/978-3-319-53007-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-53007-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53006-2
Online ISBN: 978-3-319-53007-9
eBook Packages: Computer ScienceComputer Science (R0)