[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fuzzy Logic Dynamic Parameter Adaptation in the Gravitational Search Algorithm

  • Conference paper
  • First Online:
Proceedings of the 16th International Conference on Hybrid Intelligent Systems (HIS 2016) (HIS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 552))

Included in the following conference series:

  • 1088 Accesses

Abstract

In this paper a new approach for parameter adaptation is proposed, where a fuzzy system is implemented to dynamically change some parameters of the Gravitational Search Algorithm (GSA), the idea of dynamically changing the parameters of GSA come from the necessity of having a method that allows GSA to be implemented on any problem without the need to find the best values for each parameter, because the fuzzy system will do that for us. To properly adjust the parameters the fuzzy system depends on some metrics of GSA, like the percentage of iterations elapsed and the degree of dispersion of the agents from GSA on the search space, which are used in the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahrololoum, A., Nezamabadi-pour, H., Bahrololoum, H., Saeed, M.: A prototype classifier based on gravitational search algorithm. Appl. Soft Comput. 12(2), 819–825 (2012). Elsevier, Iran

    Article  Google Scholar 

  2. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. University of Pretoria, South Africa

    Google Scholar 

  3. Hassanzadeh, H.R., Rouhani, M.: A multi-objective gravitational search algorithm. In: Second International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN), pp. 7–12. IEEE, Liverpool (2010)

    Google Scholar 

  4. Hatamlou, A., Abdullah, S., Othman, Z.: Gravitational search algorithm with heuristic search for clustering problems. In: 3rd Conference on Data Mining and Optimization (DMO), pp. 190–193. IEEE, Putrajaya (2011)

    Google Scholar 

  5. Holliday, D., Resnick, R., Walker, J.: Fundamental of Physic. Wiley, Hoboken (1993)

    Google Scholar 

  6. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  7. Mirjalili, S., Hashim, S.Z.M.: A new hybrid PSOGSA algorithm for function optimization. In: International Conference on Computer and Information Application (ICCIA), pp. 374 – 377. IEEE, Tianjin (2010)

    Google Scholar 

  8. Mirjalili, S., Hashim, S., Sardroudi, H.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 218(22), 11125–11137 (2012). Elsevier, Malaysia

    MathSciNet  MATH  Google Scholar 

  9. Olivas, F., Valdez, F., Castillo, O.: A comparative study of membership functions for an interval type-2 fuzzy system used to dynamic parameter adaptation in particle swarm optimization. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds.). SCI, vol. 547, pp. 67–78. Springer, Heidelberg (2014). doi:10.1007/978-3-319-05170-3_5

    Chapter  Google Scholar 

  10. Pagnin, A., Schellini, S.A., Spadotto, A., Guido, R.C., Ponti, M., Chiachia, G., Falcao, A.X.: Feature selection through gravitational search algorithm. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2052–2055 IEEE, Prague (2011)

    Google Scholar 

  11. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009). Elsevier, Iran

    Article  MATH  Google Scholar 

  12. Sombra, A., Valdez, F., Melin, P., Castillo, O.: A new gravitational search algorithm using fuzzy logic to parameter adaptation. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1068–1074. IEEE, June 2013

    Google Scholar 

  13. Verma, O.P., Sharma, R.: Newtonian gravitational edge detection using gravitational search algorithm. In: International Conference on Communication Systems and Network Technologies (CSNT), pp. 184–188. IEEE, Rajkot (2012)

    Google Scholar 

  14. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zadeh, L.: Fuzzy logic. IEEE Comput. Mag. 1, 83–93 (1988)

    Article  Google Scholar 

  16. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning—I. Inform. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Olivas, F., Valdez, F., Castillo, O. (2017). Fuzzy Logic Dynamic Parameter Adaptation in the Gravitational Search Algorithm. In: Abraham, A., Haqiq, A., Alimi, A., Mezzour, G., Rokbani, N., Muda, A. (eds) Proceedings of the 16th International Conference on Hybrid Intelligent Systems (HIS 2016). HIS 2016. Advances in Intelligent Systems and Computing, vol 552. Springer, Cham. https://doi.org/10.1007/978-3-319-52941-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52941-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52940-0

  • Online ISBN: 978-3-319-52941-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics