Abstract
In this paper a new approach for parameter adaptation is proposed, where a fuzzy system is implemented to dynamically change some parameters of the Gravitational Search Algorithm (GSA), the idea of dynamically changing the parameters of GSA come from the necessity of having a method that allows GSA to be implemented on any problem without the need to find the best values for each parameter, because the fuzzy system will do that for us. To properly adjust the parameters the fuzzy system depends on some metrics of GSA, like the percentage of iterations elapsed and the degree of dispersion of the agents from GSA on the search space, which are used in the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahrololoum, A., Nezamabadi-pour, H., Bahrololoum, H., Saeed, M.: A prototype classifier based on gravitational search algorithm. Appl. Soft Comput. 12(2), 819–825 (2012). Elsevier, Iran
Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. University of Pretoria, South Africa
Hassanzadeh, H.R., Rouhani, M.: A multi-objective gravitational search algorithm. In: Second International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN), pp. 7–12. IEEE, Liverpool (2010)
Hatamlou, A., Abdullah, S., Othman, Z.: Gravitational search algorithm with heuristic search for clustering problems. In: 3rd Conference on Data Mining and Optimization (DMO), pp. 190–193. IEEE, Putrajaya (2011)
Holliday, D., Resnick, R., Walker, J.: Fundamental of Physic. Wiley, Hoboken (1993)
Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)
Mirjalili, S., Hashim, S.Z.M.: A new hybrid PSOGSA algorithm for function optimization. In: International Conference on Computer and Information Application (ICCIA), pp. 374 – 377. IEEE, Tianjin (2010)
Mirjalili, S., Hashim, S., Sardroudi, H.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 218(22), 11125–11137 (2012). Elsevier, Malaysia
Olivas, F., Valdez, F., Castillo, O.: A comparative study of membership functions for an interval type-2 fuzzy system used to dynamic parameter adaptation in particle swarm optimization. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds.). SCI, vol. 547, pp. 67–78. Springer, Heidelberg (2014). doi:10.1007/978-3-319-05170-3_5
Pagnin, A., Schellini, S.A., Spadotto, A., Guido, R.C., Ponti, M., Chiachia, G., Falcao, A.X.: Feature selection through gravitational search algorithm. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2052–2055 IEEE, Prague (2011)
Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009). Elsevier, Iran
Sombra, A., Valdez, F., Melin, P., Castillo, O.: A new gravitational search algorithm using fuzzy logic to parameter adaptation. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1068–1074. IEEE, June 2013
Verma, O.P., Sharma, R.: Newtonian gravitational edge detection using gravitational search algorithm. In: International Conference on Communication Systems and Network Technologies (CSNT), pp. 184–188. IEEE, Rajkot (2012)
Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Zadeh, L.: Fuzzy logic. IEEE Comput. Mag. 1, 83–93 (1988)
Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning—I. Inform. Sci. 8, 199–249 (1975)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Olivas, F., Valdez, F., Castillo, O. (2017). Fuzzy Logic Dynamic Parameter Adaptation in the Gravitational Search Algorithm. In: Abraham, A., Haqiq, A., Alimi, A., Mezzour, G., Rokbani, N., Muda, A. (eds) Proceedings of the 16th International Conference on Hybrid Intelligent Systems (HIS 2016). HIS 2016. Advances in Intelligent Systems and Computing, vol 552. Springer, Cham. https://doi.org/10.1007/978-3-319-52941-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-52941-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-52940-0
Online ISBN: 978-3-319-52941-7
eBook Packages: EngineeringEngineering (R0)