[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Unsupervised Deep Networks for Temporal Localization of Human Actions in Streaming Videos

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10073))

Included in the following conference series:

  • 1878 Accesses

Abstract

We propose a deep neural network which captures latent temporal features suitable for localizing actions temporally in streaming videos. This network uses unsupervised generative models containing autoencoders and conditional restricted Boltzmann machines to model temporal structure present in an action. Human motions are non-linear in nature, and thus require continuous temporal model representation of motion which are crucial for streaming videos. The generative ability would help predict features at future time steps which can give an indication of completion of action at any instant. To accumulate M classes of action, we train an autencoder to seperate out actions spaces, and learn generative models per action space. The final layer accumulates statistics from each model, and estimates action class and percentage of completion in a segment of frames. Experimental results prove that this network provides a good predictive and recognition capability required for action localization in streaming videos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sutskever, I., Hinton, G.E.: Learning multilevel distributed representations for high-dimensional sequences. In: Meila, M., Shen, X., (eds.) Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS 2007), vol. 2, pp. 548–555 (2007). Journal of Machine Learning Research - Proceedings Track

    Google Scholar 

  2. Tang, K., Fei-Fei, L., Koller, D.: Learning latent temporal structure for complex event detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1250–1257 (2012)

    Google Scholar 

  3. Gong, D., Medioni, G., Zhao, X.: Structured time series analysis for human action segmentation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1414–1427 (2014)

    Article  Google Scholar 

  4. Chan-Hon-Tong, A., Achard, C., Lucat, L.: Simultaneous segmentation and classification of human actions in video streams using deeply optimized hough transform. Pattern Recogn. 47, 3807–3818 (2014)

    Article  Google Scholar 

  5. Shao, L., Ji, L., Liu, Y., Zhang, J.: Human action segmentation and recognition via motion and shape analysis. Pattern Recogn. Lett. 33, 438–445 (2012). Intelligent Multimedia Interactivity

    Article  Google Scholar 

  6. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 3551–3558 (2013)

    Google Scholar 

  7. Shao, L., Zhen, X., Tao, D., Li, X.: Spatio-temporal laplacian pyramid coding for action recognition. IEEE Trans. Cybern. 44, 817–827 (2014)

    Article  Google Scholar 

  8. Pirsiavash, H., Ramanan, D.: Parsing videos of actions with segmental grammars. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 612–619 (2014)

    Google Scholar 

  9. Kläser, A., Marszałek, M., Schmid, C., Zisserman, A.: Human focused action localization in video. In: Kutulakos, K.N. (ed.) ECCV 2010. LNCS, vol. 6553, pp. 219–233. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35749-7_17

    Chapter  Google Scholar 

  10. Tran, D., Yuan, J.: Max-margin structured output regression for spatio-temporal action localization. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K., (eds). Advances in Neural Information Processing Systems 25, pp. 350–358. Curran Associates, Inc. (2012)

    Google Scholar 

  11. Jain, M., van Gemert, J., Jegou, H., Bouthemy, P., Snoek, C.: Action localization with tubelets from motion. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 740–747 (2014)

    Google Scholar 

  12. Nair, B.M., Asari, V.K.: Learning and association of features for action recognition in streaming video. In: Bebis, G., et al. (eds.) ISVC 2014. LNCS, vol. 8888, pp. 642–651. Springer, Heidelberg (2014). doi:10.1007/978-3-319-14364-4_62

    Google Scholar 

  13. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 19, pp. 153–160. MIT Press, Cambridge (2007)

    Google Scholar 

  15. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002)

    Article  MATH  Google Scholar 

  16. Taylor, G.W., Hinton, G.E.: Factored conditional restricted Boltzmann machines for modeling motion style. In: Proceedings of the 26th Annual International Conference on Machine Learning. ICML 2009, pp. 1025–1032. ACM, New York (2009)

    Google Scholar 

  17. Taylor, G.W., Hinton, G.E., Roweis, S.T.: Modeling human motion using binary latent variables. In: Neural Information Processing Systems, pp. 1345–1352 (2006)

    Google Scholar 

  18. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 32–36 (2004)

    Google Scholar 

  19. Rodriguez, M., Ahmed, J., Shah, M.: Action MACH a spatio-temporal maximum average correlation height filter for action recognition. In: Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  20. Wang, J., Chen, Z., Wu, Y.: Action recognition with multiscale spatio-temporal contexts. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3185–3192 (2011)

    Google Scholar 

  21. Yuan, C., Li, X., Hu, W., Ling, H., Maybank, S.: 3D R transform on spatio-temporal interest points for action recognition. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 724–730 (2013)

    Google Scholar 

  22. Jiang, Z., Lin, Z., Davis, L.: Recognizing human actions by learning and matching shape-motion prototype trees. IEEE Trans. Pattern Anal. Mach. Intell. 34, 533–547 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank PhD advisors Dr. Kimberly D. Kendricks, Dr. Keigo Hirakawa, and Dr. Vijayan Asari for the immense help and guidance in this research. This work is supported by Sensor Systems Division of University of Dayton Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binu M. Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Nair, B.M. (2016). Unsupervised Deep Networks for Temporal Localization of Human Actions in Streaming Videos. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10073. Springer, Cham. https://doi.org/10.1007/978-3-319-50832-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50832-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50831-3

  • Online ISBN: 978-3-319-50832-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics