[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Textile Integrated Wearable Technologies for Sports and Medical Applications

  • Chapter
  • First Online:
Smart Textiles

Abstract

Innovative and pervasive monitoring possibilities are given using textile integration of wearable computing components. We present the FitnessSHIRT (Fraunhofer IIS, Erlangen, Germany) as one example of a textile integrated wearable computing device. Using the FitnessSHIRT, the electric activity of the human heart and breathing characteristics can be determined. Within this chapter, we give an overview of the market situation, current application scenarios, and related work. We describe the technology and algorithms behind the wearable FitnessSHIRT as well as current application areas in sports and medicine. Challenges using textile integrated wearable devices are stated and addressed in experiments or in explicit recommendations. The applicability of the FitnessSHIRT is shown in user studies in sports and medicine. This chapter is concluded with perspectives for textile integrated wearable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International Data Corporation. Accessed on Apr 29th 2016. www.idc.com

  2. Harrop, P., Hayward, J., Das, R., Holland, G.: Wearable technology 2015–2025: Technologies, markets, forecasts. Technical report, IDTechEx (2015)

    Google Scholar 

  3. Ballhaus, W., Song, B., Meyer, F.A., Ohrtmann, J.P., Dressel, C.: Media Trend Outlook. Die tragbare Zukunft kommt näher. PricewaterhouseCoopers AG Wirtschaftsprüfungsgesellschaft, Wearable (2015)

    Google Scholar 

  4. Murry, S.: IoT World: Consumer Experience, Trust is Key to Widespread Adoption of Connected Home Devices. Accessed on April 21st 2016. http://www.broadcom.com/blog/wireless-technology/iot-world-consumer-experience-trust-is-key-to-widespread-adoption-of-connected-home-devices/

  5. Bloom, D.E., Canning, D.: Global demographic change: Dimensions and economic significance. NBER Working Paper Series, pp. 1–45 (2004)

    Google Scholar 

  6. Sharkey, B.J., Gaskill, S.: Fitness & Health. Human Kinetics Publishers (2013)

    Google Scholar 

  7. Dinh, C., Struck, M.: A new real-time fall detection approach using fuzzy logic and a neural network. In: Proceedings of 6th International Workshop on Wearable Micro and Nano Technologies for Personalized Health (pHealth), pp. 57–60 (2009)

    Google Scholar 

  8. Krassnig, G., Tantinger, D., Hofmann, C., Wittenberg, T., Struck, M.: User-friendly system for recognition of activities with an accelerometer. In: Proceedings of 4th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 1–8 (2010)

    Google Scholar 

  9. Jiménez-Mixco, V., Cabrera-Umpiérrez, M.F., Blanco, A.E., Waldmeyer, M.T.A., Tantinger, D., Bonfiglio, S.: Personalized e-health for elderly self-care and empowerment. In: Ambient Intelligence – Software and Applications, pp. 213–216. Springer (2012)

    Google Scholar 

  10. Tantinger, D., Feilner, S., Struck, M., Weigand, C.: Development of a socio-technical system for an age-appropriate domestic environment. In: Constructing Ambient Intelligence, pp. 196–200. Springer (2012)

    Google Scholar 

  11. Barrett, P.M., Komatireddy, R., Haaser, S., Topol, S., Sheard, J., Encinas, J., Fought, A.J., Topol, E.J.: Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am. J. Med. 127(1), 95.E11–95.E17 (2014)

    Article  Google Scholar 

  12. Hu, S., Wei, H., Chen, Y., Tan, J.: A real-time cardiac arrhythmia classification system with wearable sensor networks. Sensors 12(9), 12844–12869 (2012)

    Article  Google Scholar 

  13. Gradl, S., Kugler, P., Lohmüller, C., Eskofier, B.: Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices. In: Proceedings of 34th Annual International Conference of the IEEE EMBC, pp. 2452–2455 (2012)

    Google Scholar 

  14. Burns, A., Greene, B.R., McGrath, M.J., O’Shea, T.J., Kuris, B., Ayer, S.M., Stroiescu, F., Cionca, V.: SHIMMER-A wireless sensor platform for noninvasive biomedical research. IEEE Sens. J. 10(9), 1527–1534 (2010)

    Article  Google Scholar 

  15. Torfs, T., Yazicioglu, R.F., Kim, S., Kim, H., Van Hoof, C., Buxi, D., Romero, I., Wijsman, J., Massé, F., Penders, J.: Ultra low power wireless ECG system with beat detection and real time impedance measurement. In: Proceedings of IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 33–36 (2010)

    Google Scholar 

  16. Buxi, D., Berset, T., Hijdra, M., Tutelaers, M., Geng, D., Hulzink, J., van Noorloos, M., Romero, I., Torfs, T., Van Helleputte, N.: Wireless 3-lead ECG system with on-board digital signal processing for ambulatory monitoring. In: Proceedings of IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 308–311 (2012)

    Google Scholar 

  17. Baig, M.M., Gholamhosseini, H., Connolly, M.J.: A comprehensive survey of wearable and wireless ECG monitoring systems for older adults. Med. Biol. Eng. Comput. 51(5), 485–495 (2013)

    Article  Google Scholar 

  18. Elgendi, M.: Fast QRS detection with an optimized knowledge-based method: evaluation on 11 standard ECG databases. PloS ONE 8(9), e73557 (2013)

    Article  Google Scholar 

  19. Pantelopoulos, A., Bourbakis, N.G.: A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst. Man Cybern. C. 40(1), 1–12 (2010)

    Article  Google Scholar 

  20. Zheng, Y.L., Ding, X.R., Poon, C.C.Y., Lo, B.P.L., Zhang, H., Zhou, X.L., Yang, G.Z., Zhao, N., Zhang, Y.T.: Unobtrusive sensing and wearable devices for health informatics. IEEE Trans. Biomed. Eng. 61(5), 1538–1554 (2014)

    Article  Google Scholar 

  21. Morrison, T., Silver, J., Otis, B.: A single-chip encrypted wireless 12-lead ECG smart shirt for continuous health monitoring. In: Proceedings of Symposium on VLSI Circuits Digest of Technical Papers, pp. 1–2 (2014)

    Google Scholar 

  22. Ehmen, H., Haesner, M., Steinke, I., Dorn, M., Gövercin, M., Steinhagen-Thiessen, E.: Comparison of four different mobile devices for measuring heart rate and ECG with respect to aspects of usability and acceptance by older people. Appl. Ergon. 43(3), 582–587 (2012)

    Article  Google Scholar 

  23. Tobola, A., Espig, C., Streit, F.J., Korpok, O., Schmitz, B., Hofmann, C., Struck, M., Weigand, C., Leutheuser, H., Eskofier, B.M., Fischer, G.: Scalable ECG hardware and algorithms for extended runtime of wearable sensors. In: Proceedings of 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 255–260 (2015)

    Google Scholar 

  24. Oberlander, T.F., et al.: Task force of the European society of cardiology and others: heart rate variability standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996)

    Google Scholar 

  25. Koehler, B.U., Hennig, C., Orglmeister, R.: QRS detection using zero crossing counts. Prog. Biomed. Res. 8(3), 138–145 (2003)

    Google Scholar 

  26. Tantinger, D., Feilner, S., Schmitz, D., Weigand, C., Hofmann, C., Struck, M.: Evaluation of QRS detection algorithm implemented for mobile applications based on ECG data acquired from sensorized garments. Biomedizinische Technik 57(SUPPL.1 TRACK-F), pp. 635–638 (2012)

    Google Scholar 

  27. Teich, J.: Hardware/software codesign: the past, the present, and predicting the future. Proc. IEEE 100(Special Centennial Issue), 1411–1430 (2012)

    Article  Google Scholar 

  28. Tobola, A., Streit, F.J., Korpok, O., Espig, C., Leutheuser, H., Lang, N., Schmitz, B., Hofmann, C., Struck, M., Weigand, C., Eskofier, B.M.E., Fischer, G.: Sampling rate impact on energy consumption of biomedical signal processing systems. In: Proceedings of 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–6 (2015)

    Google Scholar 

  29. Leutheuser, H., Tobola, A., Anneken, L., Gradl, S., Arnold, M., Lang, N., Achenbach, S., Eskofier, B.M.: Arrhythmia classification using RR intervals: Improvement with sinusoidal regression feature. In: Proceedings of 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–5 (2015)

    Google Scholar 

  30. Kleiger, R.E., Miller, J.P., Bigger, J.T., Moss, A.J.: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 59(4), 256–262 (1987)

    Article  Google Scholar 

  31. Hottenrott, K., Hoos, O., Esperer, H.D.: Heart rate variability and physical exercise. current status. Herz 31(6), 544–552 (2006)

    Article  Google Scholar 

  32. Gradl, S., Leutheuser, H., Elgendi, M., Lang, N., Eskofier, B.: Temporal correction of detected R-peaks in ECG signals: A crucial step to improve QRS detection algorithms. In: Proceedings of 37th Annual International Conference of the IEEE EMBC, pp. 522–525 (2015)

    Google Scholar 

  33. Clifford, G.D., Azuaje, F., McSharry, P.: Advanced Methods and Tools for ECG Data Analysis. Artech House, Inc. (2006)

    Google Scholar 

  34. Vigouroux, R.: The electrical resistance considered as clinical sign. Prog. Med. 3, 87–89 (1888)

    Google Scholar 

  35. Fere, C.: Note on changes in electrical resistance under the effect of sensory stimulation and emotion. Comptes Rendus des Seances de la Societe de Biologie Series 9(5), 217–219 (1988)

    Google Scholar 

  36. Lang, N., Brischwein, M., Haßlmeyer, E., Tantinger, D., Feilner, S., Heinrich, A., Leutheuser, H., Gradl, S., Weigand, C., Eskofier, B., Struck, M.: Novel filter technique to improve R-peak detection for ECG data with motion artefacts from wearable systems. In: Proceedings of Computing in Cardiology (CinC) (2015)

    Google Scholar 

  37. Hamilton, P.: Open source ECG analysis. In: Proceedings of Computer in Cardiology (CinC), pp. 101–104 (2002)

    Google Scholar 

  38. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)

    Article  Google Scholar 

  39. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. 20(3), 45–50 (2001)

    Article  Google Scholar 

  40. Hoekema, R., Uijen, G.J.H., Van Oosterom, A.: Geometrical aspects of the interindividual variability of multilead ECG recordings. IEEE Trans. Biomed. Eng. 48(5), 551–559 (2001)

    Article  Google Scholar 

  41. Green, L.S., Lux, R.L., Haws, C.W., Williams, R.R., Hunt, S.C., Burgess, M.J.: Effects of age, sex, and body habitus on QRS and ST-T potential maps of 1100 normal subjects. Circulation 71(2), 244–253 (1985)

    Article  Google Scholar 

  42. Tantinger, D., Zrenner, M., Lang, N., Leutheuser, H., Eskofier, B., Weigand, C., Struck, M.: Human authentication implemented for mobile applications based on ECG-data acquired from sensorized garments. In: Proceedings of Computing in Cardiology (CinC), pp. 417–420 (2015)

    Google Scholar 

  43. Reyes, B.A., Posada-Quintero, H.F., Bales, J.R., Clement, A.L., Pins, G.D., Swiston, A., Riistama, J., Florian, J.P., Shykoff, B., Qin, M., Chon, K.H.: Novel electrodes for underwater ECG monitoring. IEEE Trans. Biomed. Eng. 61(6), 1863–1876 (2014)

    Article  Google Scholar 

  44. Whitting, J.W., von Tscharner, V.: Monopolar electromyographic signals recorded by a current amplifier in air and under water without insulation. J. Electromyogr. Kinesiol. 24(6), 848–854 (2014)

    Article  Google Scholar 

  45. Trigo, J.D., Alesanco, Á., Martínez, I., García, J.: A review on digital ECG formats and the relationships between them. IEEE Trans. Inf. Technol. Biomed. 16(3), 432–444 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Titus Czyz for his feedback to application scenarios in sports. This contribution was supported by the Bavarian Ministry of Economic Affairs and Media, Energy and Technology as a part of the Bavarian project “Leistungszentrum Elektroniksysteme (LZE).” We thank Bjoern Schmitz, Ruslan Rybalko, Sven Feilner, and Andreas Huber for helpful discussion. We thank Fraunhofer Gesellschaft, BMBF, and DFG for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Leutheuser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Leutheuser, H. et al. (2017). Textile Integrated Wearable Technologies for Sports and Medical Applications. In: Schneegass, S., Amft, O. (eds) Smart Textiles. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-50124-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50124-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50123-9

  • Online ISBN: 978-3-319-50124-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics