Abstract
Innovative and pervasive monitoring possibilities are given using textile integration of wearable computing components. We present the FitnessSHIRT (Fraunhofer IIS, Erlangen, Germany) as one example of a textile integrated wearable computing device. Using the FitnessSHIRT, the electric activity of the human heart and breathing characteristics can be determined. Within this chapter, we give an overview of the market situation, current application scenarios, and related work. We describe the technology and algorithms behind the wearable FitnessSHIRT as well as current application areas in sports and medicine. Challenges using textile integrated wearable devices are stated and addressed in experiments or in explicit recommendations. The applicability of the FitnessSHIRT is shown in user studies in sports and medicine. This chapter is concluded with perspectives for textile integrated wearable devices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
International Data Corporation. Accessed on Apr 29th 2016. www.idc.com
Harrop, P., Hayward, J., Das, R., Holland, G.: Wearable technology 2015–2025: Technologies, markets, forecasts. Technical report, IDTechEx (2015)
Ballhaus, W., Song, B., Meyer, F.A., Ohrtmann, J.P., Dressel, C.: Media Trend Outlook. Die tragbare Zukunft kommt näher. PricewaterhouseCoopers AG Wirtschaftsprüfungsgesellschaft, Wearable (2015)
Murry, S.: IoT World: Consumer Experience, Trust is Key to Widespread Adoption of Connected Home Devices. Accessed on April 21st 2016. http://www.broadcom.com/blog/wireless-technology/iot-world-consumer-experience-trust-is-key-to-widespread-adoption-of-connected-home-devices/
Bloom, D.E., Canning, D.: Global demographic change: Dimensions and economic significance. NBER Working Paper Series, pp. 1–45 (2004)
Sharkey, B.J., Gaskill, S.: Fitness & Health. Human Kinetics Publishers (2013)
Dinh, C., Struck, M.: A new real-time fall detection approach using fuzzy logic and a neural network. In: Proceedings of 6th International Workshop on Wearable Micro and Nano Technologies for Personalized Health (pHealth), pp. 57–60 (2009)
Krassnig, G., Tantinger, D., Hofmann, C., Wittenberg, T., Struck, M.: User-friendly system for recognition of activities with an accelerometer. In: Proceedings of 4th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 1–8 (2010)
Jiménez-Mixco, V., Cabrera-Umpiérrez, M.F., Blanco, A.E., Waldmeyer, M.T.A., Tantinger, D., Bonfiglio, S.: Personalized e-health for elderly self-care and empowerment. In: Ambient Intelligence – Software and Applications, pp. 213–216. Springer (2012)
Tantinger, D., Feilner, S., Struck, M., Weigand, C.: Development of a socio-technical system for an age-appropriate domestic environment. In: Constructing Ambient Intelligence, pp. 196–200. Springer (2012)
Barrett, P.M., Komatireddy, R., Haaser, S., Topol, S., Sheard, J., Encinas, J., Fought, A.J., Topol, E.J.: Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am. J. Med. 127(1), 95.E11–95.E17 (2014)
Hu, S., Wei, H., Chen, Y., Tan, J.: A real-time cardiac arrhythmia classification system with wearable sensor networks. Sensors 12(9), 12844–12869 (2012)
Gradl, S., Kugler, P., Lohmüller, C., Eskofier, B.: Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices. In: Proceedings of 34th Annual International Conference of the IEEE EMBC, pp. 2452–2455 (2012)
Burns, A., Greene, B.R., McGrath, M.J., O’Shea, T.J., Kuris, B., Ayer, S.M., Stroiescu, F., Cionca, V.: SHIMMER-A wireless sensor platform for noninvasive biomedical research. IEEE Sens. J. 10(9), 1527–1534 (2010)
Torfs, T., Yazicioglu, R.F., Kim, S., Kim, H., Van Hoof, C., Buxi, D., Romero, I., Wijsman, J., Massé, F., Penders, J.: Ultra low power wireless ECG system with beat detection and real time impedance measurement. In: Proceedings of IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 33–36 (2010)
Buxi, D., Berset, T., Hijdra, M., Tutelaers, M., Geng, D., Hulzink, J., van Noorloos, M., Romero, I., Torfs, T., Van Helleputte, N.: Wireless 3-lead ECG system with on-board digital signal processing for ambulatory monitoring. In: Proceedings of IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 308–311 (2012)
Baig, M.M., Gholamhosseini, H., Connolly, M.J.: A comprehensive survey of wearable and wireless ECG monitoring systems for older adults. Med. Biol. Eng. Comput. 51(5), 485–495 (2013)
Elgendi, M.: Fast QRS detection with an optimized knowledge-based method: evaluation on 11 standard ECG databases. PloS ONE 8(9), e73557 (2013)
Pantelopoulos, A., Bourbakis, N.G.: A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst. Man Cybern. C. 40(1), 1–12 (2010)
Zheng, Y.L., Ding, X.R., Poon, C.C.Y., Lo, B.P.L., Zhang, H., Zhou, X.L., Yang, G.Z., Zhao, N., Zhang, Y.T.: Unobtrusive sensing and wearable devices for health informatics. IEEE Trans. Biomed. Eng. 61(5), 1538–1554 (2014)
Morrison, T., Silver, J., Otis, B.: A single-chip encrypted wireless 12-lead ECG smart shirt for continuous health monitoring. In: Proceedings of Symposium on VLSI Circuits Digest of Technical Papers, pp. 1–2 (2014)
Ehmen, H., Haesner, M., Steinke, I., Dorn, M., Gövercin, M., Steinhagen-Thiessen, E.: Comparison of four different mobile devices for measuring heart rate and ECG with respect to aspects of usability and acceptance by older people. Appl. Ergon. 43(3), 582–587 (2012)
Tobola, A., Espig, C., Streit, F.J., Korpok, O., Schmitz, B., Hofmann, C., Struck, M., Weigand, C., Leutheuser, H., Eskofier, B.M., Fischer, G.: Scalable ECG hardware and algorithms for extended runtime of wearable sensors. In: Proceedings of 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 255–260 (2015)
Oberlander, T.F., et al.: Task force of the European society of cardiology and others: heart rate variability standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996)
Koehler, B.U., Hennig, C., Orglmeister, R.: QRS detection using zero crossing counts. Prog. Biomed. Res. 8(3), 138–145 (2003)
Tantinger, D., Feilner, S., Schmitz, D., Weigand, C., Hofmann, C., Struck, M.: Evaluation of QRS detection algorithm implemented for mobile applications based on ECG data acquired from sensorized garments. Biomedizinische Technik 57(SUPPL.1 TRACK-F), pp. 635–638 (2012)
Teich, J.: Hardware/software codesign: the past, the present, and predicting the future. Proc. IEEE 100(Special Centennial Issue), 1411–1430 (2012)
Tobola, A., Streit, F.J., Korpok, O., Espig, C., Leutheuser, H., Lang, N., Schmitz, B., Hofmann, C., Struck, M., Weigand, C., Eskofier, B.M.E., Fischer, G.: Sampling rate impact on energy consumption of biomedical signal processing systems. In: Proceedings of 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–6 (2015)
Leutheuser, H., Tobola, A., Anneken, L., Gradl, S., Arnold, M., Lang, N., Achenbach, S., Eskofier, B.M.: Arrhythmia classification using RR intervals: Improvement with sinusoidal regression feature. In: Proceedings of 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–5 (2015)
Kleiger, R.E., Miller, J.P., Bigger, J.T., Moss, A.J.: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 59(4), 256–262 (1987)
Hottenrott, K., Hoos, O., Esperer, H.D.: Heart rate variability and physical exercise. current status. Herz 31(6), 544–552 (2006)
Gradl, S., Leutheuser, H., Elgendi, M., Lang, N., Eskofier, B.: Temporal correction of detected R-peaks in ECG signals: A crucial step to improve QRS detection algorithms. In: Proceedings of 37th Annual International Conference of the IEEE EMBC, pp. 522–525 (2015)
Clifford, G.D., Azuaje, F., McSharry, P.: Advanced Methods and Tools for ECG Data Analysis. Artech House, Inc. (2006)
Vigouroux, R.: The electrical resistance considered as clinical sign. Prog. Med. 3, 87–89 (1888)
Fere, C.: Note on changes in electrical resistance under the effect of sensory stimulation and emotion. Comptes Rendus des Seances de la Societe de Biologie Series 9(5), 217–219 (1988)
Lang, N., Brischwein, M., Haßlmeyer, E., Tantinger, D., Feilner, S., Heinrich, A., Leutheuser, H., Gradl, S., Weigand, C., Eskofier, B., Struck, M.: Novel filter technique to improve R-peak detection for ECG data with motion artefacts from wearable systems. In: Proceedings of Computing in Cardiology (CinC) (2015)
Hamilton, P.: Open source ECG analysis. In: Proceedings of Computer in Cardiology (CinC), pp. 101–104 (2002)
Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)
Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. 20(3), 45–50 (2001)
Hoekema, R., Uijen, G.J.H., Van Oosterom, A.: Geometrical aspects of the interindividual variability of multilead ECG recordings. IEEE Trans. Biomed. Eng. 48(5), 551–559 (2001)
Green, L.S., Lux, R.L., Haws, C.W., Williams, R.R., Hunt, S.C., Burgess, M.J.: Effects of age, sex, and body habitus on QRS and ST-T potential maps of 1100 normal subjects. Circulation 71(2), 244–253 (1985)
Tantinger, D., Zrenner, M., Lang, N., Leutheuser, H., Eskofier, B., Weigand, C., Struck, M.: Human authentication implemented for mobile applications based on ECG-data acquired from sensorized garments. In: Proceedings of Computing in Cardiology (CinC), pp. 417–420 (2015)
Reyes, B.A., Posada-Quintero, H.F., Bales, J.R., Clement, A.L., Pins, G.D., Swiston, A., Riistama, J., Florian, J.P., Shykoff, B., Qin, M., Chon, K.H.: Novel electrodes for underwater ECG monitoring. IEEE Trans. Biomed. Eng. 61(6), 1863–1876 (2014)
Whitting, J.W., von Tscharner, V.: Monopolar electromyographic signals recorded by a current amplifier in air and under water without insulation. J. Electromyogr. Kinesiol. 24(6), 848–854 (2014)
Trigo, J.D., Alesanco, Á., Martínez, I., García, J.: A review on digital ECG formats and the relationships between them. IEEE Trans. Inf. Technol. Biomed. 16(3), 432–444 (2012)
Acknowledgements
We thank Titus Czyz for his feedback to application scenarios in sports. This contribution was supported by the Bavarian Ministry of Economic Affairs and Media, Energy and Technology as a part of the Bavarian project “Leistungszentrum Elektroniksysteme (LZE).” We thank Bjoern Schmitz, Ruslan Rybalko, Sven Feilner, and Andreas Huber for helpful discussion. We thank Fraunhofer Gesellschaft, BMBF, and DFG for financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Leutheuser, H. et al. (2017). Textile Integrated Wearable Technologies for Sports and Medical Applications. In: Schneegass, S., Amft, O. (eds) Smart Textiles. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-50124-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-50124-6_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50123-9
Online ISBN: 978-3-319-50124-6
eBook Packages: Computer ScienceComputer Science (R0)