[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Asymptotic Density and the Theory of Computability: A Partial Survey

  • Chapter
  • First Online:
Computability and Complexity

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10010))

Abstract

The purpose of this paper is to survey recent work on how classical asymptotic density interacts with the theory of computability. We have tried to make the survey accessible to those who are not specialists in computability theory and we mainly state results without proof, but we include a few easy proofs to illustrate the flavor of the subject.

This paper is dedicated to Rod Downey in honor of his important contributions to computability theory.

The authors would like to thank the Simons Foundation for its support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, U., Cai, M., Diamondstone, D., Jockusch, C., Lempp, S.: Asymptotic density, computable traceability, and \(1\)-randomness. Fundam. Math. 234, 41–53 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Astor, E., Hirschfeldt, D., Jockusch, C.: Dense computability, upper cones and minimal pairs. In preparation

    Google Scholar 

  3. Barzdin, J.: On a frequency solution to the problem of occurrence in a recursively enumerable set. Proc. Steklov Inst. Math. 133, 49–56 (1973)

    MATH  Google Scholar 

  4. Bienvenu, L., Day, A., Hölzl, R.: From bi-immunity to absolute undecidability. J. Symb. Log. 78(4), 1218–1228 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cholak, P., Igusa, G.: Bounding a density-\(1\) and quasiminimality in the generic degrees. Preprint

    Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press and McGraw-Hill (2001). Section 29.3: The simplex algorithm, pp. 790–804

    Google Scholar 

  7. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory and Applications of Computability. Springer, Springer, New York (2010)

    Book  MATH  Google Scholar 

  8. Downey, R.G., Jockusch Jr., C.G., Schupp, P.E.: Asymptotic density and computably enumerable sets. J. Math. Log. 13 (2013). 1350005, 43 pp.

    Google Scholar 

  9. Downey, R.G., Jockusch Jr., C.G., McNicholl, T.H., Schupp, P.E.: Asymptotic density and the Ershov Hierarchy. Math. Log. Q. 61, 189–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dzhafarov, D.D., Igusa, G.: Notions of robust information coding, computability. To appear

    Google Scholar 

  11. Figueira, S., Miller, J.S., Nies, A.: Indifferent sets. J. Log. Comput. 19, 425–443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gurevich, Y.: Average case completeness. J. Comput. Syst. Sci. 42, 346–398 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harrison-Trainor, M.: The Gamma questions for many-one degrees. Preprint. arXiv: 1606.05701

  14. Hirschfeldt, D., Jockusch, C., Kuyper, R., Schupp, P.: Coarse reducibility and algorithmic randomness. J. Symb. Log. 81, 1028–1046 (2016)

    Article  MathSciNet  Google Scholar 

  15. Hirschfeldt, D.R., Jockusch, C.G., McNicholl, T., Schupp, P.E.: Asymptotic density and the coarse computability bound. Computability 5, 13–27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Igusa, G.: Nonexistence of minimal pairs for generic computability. J. Symb. Log. 78, 51–522 (2012)

    MathSciNet  Google Scholar 

  17. Igusa, G.: The generic degrees of density-\(1\) sets and a characterization of the hyperarithmetic reals. J. Symb. Log. 80, 1290–1314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jockusch, C.: The degrees of bi-immune sets. Zeitschr. f. math. Logik und Grundlagen d. Math. 15, 135–140 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jockusch, C.G., Schupp, P.E.: Generic computability, Turing degrees, and asymptotic density. J. Lond. Math. Soc. 85, 472–490 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Generic-case complexity, decision problems in group theory and random walks. J. Algebra 264, 665–694 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Klee, V., Minty, G.: How good is the simplex algorithm? Inequalities, III (Proceedings of Third Symposium, University of California, Los Angeles, 1969; dedicated to the memory of Theodore S. Motzkin), pp. 159–175. Academic Press, New York (1972)

    Google Scholar 

  22. Kurtz, S.A.: Notions of weak genericity. J. Symb. Log. 48, 764–770 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Levin, L.: Average case complete problems. SIAM J. Comput. 15, 285–286 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Classics in Mathematics. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  25. Monin, B.: Asymptotic density, error-correcting codes. https://www.lacl.fr/ benoit.monin/ressources/papers/resolution_gamma.pdf

  26. Monin, B., Nies, A.: A unifying approach to the Gamma question. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, pp. 585–596, 6–10 July 2015

    Google Scholar 

  27. Myasnikov, A., Osin, D.: Algorithmically finite groups. J. Pure Appl. Algebra 215, 2789–2796 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Myasnikov, A., Rybalov, A.: Generic complexity of undecidable problems. J. Symb. Log. 73, 656–673 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Myasnikov, A., Shpilrain, V., Ushakov, A.: Non-commutative Cryptography and Complexity of Group-Theoretic Problems. Mathematical Surveys and Monographs, vol. 177. American Mathematical Society (2011)

    Google Scholar 

  30. Nies, A.: Computability and Randomness. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  31. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory. Trudy Math. Inst. Steklov 44, 3–143 (1955)

    Google Scholar 

  32. Post, E.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc. 52, 264–268 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rotman, J.: An Introduction to the Theory of Groups. Graduate Texts in Mathematics, 4th edn. Springer, New York (1995)

    Book  MATH  Google Scholar 

  34. Terwijn, S.A., Zambella, D.: Algorithmic randomness and lowness. J. Symb. Log. 66, 1199–1205 (2001)

    Article  MATH  Google Scholar 

  35. Woess, W.: Cogrowth of groups and simple random walks. Arch. Math. 41, 363–370 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl G. Jockusch Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jockusch, C.G., Schupp, P.E. (2017). Asymptotic Density and the Theory of Computability: A Partial Survey. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds) Computability and Complexity. Lecture Notes in Computer Science(), vol 10010. Springer, Cham. https://doi.org/10.1007/978-3-319-50062-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50062-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50061-4

  • Online ISBN: 978-3-319-50062-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics