[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Range-Consistent Forbidden Regions of Allen’s Relations

  • Conference paper
  • First Online:
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2017)

Abstract

For all 8192 combinations of Allen’s 13 relations between one task with origin \(o_i\) and fixed length \(\ell _i\) and another task with origin \(o_j\) and fixed length \(\ell _j\), this paper shows how to systematically derive a formula \(F(\underline{o_j}, \overline{o_j}, \ell _i, \ell _j)\), where \(\underline{o_j}\) and \(\overline{o_j}\) respectively denote the earliest and the latest origin of task j, evaluating to a set of integers which are infeasible for \(o_i\) for the given combination. Such forbidden regions allow maintaining range-consistency for an Allen constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  2. Beldiceanu, N., Carlsson, M., Derrien, A., Schutt, A., Stuckey, P.J.: Range-consistent forbidden regions of Allen’s relations. Technical report T2016-2, Swedish Institute of Computer Science (2016). http://soda.swedishict.se

  3. Bessière, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, chap. I.3, pp. 29–83. Elsevier (2006)

    Google Scholar 

  4. Derrien, A., Fages, J.-G., Petit, T., Prud’homme, C.: A global constraint for a tractable class of temporal optimization problems. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 105–120. Springer, Cham (2015). doi:10.1007/978-3-319-23219-5_8

    Google Scholar 

  5. Gennari, R., Mich, O.: E-Learning and deaf children: a logic-based web tool. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) ICWL 2007. LNCS, vol. 4823, pp. 312–319. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78139-4_28

    Chapter  Google Scholar 

  6. Gent, I.P., Jefferson, C., Linton, S., Miguel, I., Nightingale, P.: Generating custom propagators for arbitrary constraints. Artif. Intell. 211, 1–33 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Laurière, J.-L.: Constraint propagation or automatic programming. Technical report 19, IBP-Laforia (1996). In French. https://www.lri.fr/~sebag/Slides/Lauriere/Rabbit.pdf

  8. Ligozat, G.: Towards a general characterization of conceptual neighborhoods in temporal and spatial reasoning. In: AAAI 1994 Workshop on Spatial and Temporal Reasoning (1994)

    Google Scholar 

  9. Monette, J.-N., Flener, P., Pearson, J.: Towards solver-independent propagators. In: Milano, M. (ed.) CP 2012. LNCS, pp. 544–560. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7_40

    Chapter  Google Scholar 

  10. Roy, P., Perez, G., Régin, J.-C., Papadopoulos, A., Pachet, F., Marchini, M.: Enforcing structure on temporal sequences: the allen constraint. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 786–801. Springer, Cham (2016). doi:10.1007/978-3-319-44953-1_49

    Chapter  Google Scholar 

  11. van Beek, P., Manchak, D.W.: The design and experimental analysis of algorithms for temporal reasoning. J. Artif. Intell. Res. (JAIR) 4, 1–18 (1996)

    MATH  Google Scholar 

Download references

Acknowledgment

The Nantes authors were partially supported both by the INRIA TASCMELB associated team and by the GRACeFUL project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640954.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Carlsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Beldiceanu, N., Carlsson, M., Derrien, A., Prud’homme, C., Schutt, A., Stuckey, P.J. (2017). Range-Consistent Forbidden Regions of Allen’s Relations. In: Salvagnin, D., Lombardi, M. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science(), vol 10335. Springer, Cham. https://doi.org/10.1007/978-3-319-59776-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59776-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59775-1

  • Online ISBN: 978-3-319-59776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics