Abstract
For all 8192 combinations of Allen’s 13 relations between one task with origin \(o_i\) and fixed length \(\ell _i\) and another task with origin \(o_j\) and fixed length \(\ell _j\), this paper shows how to systematically derive a formula \(F(\underline{o_j}, \overline{o_j}, \ell _i, \ell _j)\), where \(\underline{o_j}\) and \(\overline{o_j}\) respectively denote the earliest and the latest origin of task j, evaluating to a set of integers which are infeasible for \(o_i\) for the given combination. Such forbidden regions allow maintaining range-consistency for an Allen constraint.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)
Beldiceanu, N., Carlsson, M., Derrien, A., Schutt, A., Stuckey, P.J.: Range-consistent forbidden regions of Allen’s relations. Technical report T2016-2, Swedish Institute of Computer Science (2016). http://soda.swedishict.se
Bessière, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, chap. I.3, pp. 29–83. Elsevier (2006)
Derrien, A., Fages, J.-G., Petit, T., Prud’homme, C.: A global constraint for a tractable class of temporal optimization problems. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 105–120. Springer, Cham (2015). doi:10.1007/978-3-319-23219-5_8
Gennari, R., Mich, O.: E-Learning and deaf children: a logic-based web tool. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) ICWL 2007. LNCS, vol. 4823, pp. 312–319. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78139-4_28
Gent, I.P., Jefferson, C., Linton, S., Miguel, I., Nightingale, P.: Generating custom propagators for arbitrary constraints. Artif. Intell. 211, 1–33 (2014)
Laurière, J.-L.: Constraint propagation or automatic programming. Technical report 19, IBP-Laforia (1996). In French. https://www.lri.fr/~sebag/Slides/Lauriere/Rabbit.pdf
Ligozat, G.: Towards a general characterization of conceptual neighborhoods in temporal and spatial reasoning. In: AAAI 1994 Workshop on Spatial and Temporal Reasoning (1994)
Monette, J.-N., Flener, P., Pearson, J.: Towards solver-independent propagators. In: Milano, M. (ed.) CP 2012. LNCS, pp. 544–560. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7_40
Roy, P., Perez, G., Régin, J.-C., Papadopoulos, A., Pachet, F., Marchini, M.: Enforcing structure on temporal sequences: the allen constraint. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 786–801. Springer, Cham (2016). doi:10.1007/978-3-319-44953-1_49
van Beek, P., Manchak, D.W.: The design and experimental analysis of algorithms for temporal reasoning. J. Artif. Intell. Res. (JAIR) 4, 1–18 (1996)
Acknowledgment
The Nantes authors were partially supported both by the INRIA TASCMELB associated team and by the GRACeFUL project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640954.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Beldiceanu, N., Carlsson, M., Derrien, A., Prud’homme, C., Schutt, A., Stuckey, P.J. (2017). Range-Consistent Forbidden Regions of Allen’s Relations. In: Salvagnin, D., Lombardi, M. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science(), vol 10335. Springer, Cham. https://doi.org/10.1007/978-3-319-59776-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-59776-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59775-1
Online ISBN: 978-3-319-59776-8
eBook Packages: Computer ScienceComputer Science (R0)