[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Computational Aspects of Greedy Partitioning of Graphs

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10336))

Included in the following conference series:

Abstract

In this paper we consider a problem of graph \({\mathcal P}\)-coloring consisting in partitioning the vertex set of a graph such that each of the resulting sets induces a graph in a given additive, hereditary class of graphs \({\mathcal P}\). We focus on partitions generated by the greedy algorithm. In particular, we show that given a graph G and an integer k deciding if the greedy algorithm outputs a \({\mathcal P}\)-coloring with a least k colors is \(\mathbb {NP}\)-complete for an infinite number of classes \({\mathcal P}\). On the other hand we get a polynomial-time certifying algorithm if k is fixed and the family of minimal forbidden graphs defining the class \({\mathcal P}\) is finite. We also prove \(\mathrm{co}\mathbb {NP}\)-completeness of the problem of deciding whether for a given graph G the difference between the largest number of colors used by the greedy algorithm and the minimum number of colors required in any \({\mathcal P}\)-coloring of G is bounded by a given constant. A new Brooks-type bound on the largest number of colors used by the greedy \({\mathcal P}\)-coloring algorithm is given.

Supported by the Polish National Science Center grant DEC-2011/02/A/ST6/00201.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Araujo, J., Linhares-Sales, C.: On the Grundy number of graphs with few \(P_4\)’s. Discret. Appl. Math. 160(18), 2514–2522 (2012). doi:10.1016/j.dam.2011.08.016

    Article  MathSciNet  MATH  Google Scholar 

  2. Borowiecki, P., Rautenbach, D.: New potential functions for greedy independence and coloring. Discret. Appl. Math. 182, 61–72 (2015). doi:10.1016/j.dam.2013.12.011

    Article  MathSciNet  MATH  Google Scholar 

  3. Borowiecki, P., Sidorowicz, E.: Dynamic coloring of graphs. Fund. Inform. 114(2), 105–128 (2012). doi:10.3233/FI-2012-620

    MathSciNet  MATH  Google Scholar 

  4. Brown, J.I.: The complexity of generalized graph colorings. Discret. Appl. Math. 69(3), 257–270 (1996). doi:10.1016/0166-218X(96)00096-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Choudum, S.A., Karthick, T.: First-Fit coloring of \(\{P_5, K_4-e\}\)-free graphs. Discret. Appl. Math. 158(6), 620–626 (2010). doi:10.1016/j.dam.2009.12.009

    Article  MathSciNet  MATH  Google Scholar 

  6. Christen, C.A., Selkow, S.M.: Some perfect coloring properties of graphs. J. Comb. Theory Ser. B 27(1), 49–59 (1979). doi:10.1016/0095-8956(79)90067-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockayne, E.J., Miller, G.G., Prins, G.: An interpolation theorem for partitions which are complete with respect to hereditary properties. J. Comb. Theory Ser. B 13, 290–297 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theoret. Comput. Sci. 1(3), 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the complexity of coloring graphs with forbidden subgraphs. J. Graph Theory 84, 331–363 (2017)

    Article  MATH  Google Scholar 

  10. Goyal, N., Vishwanathan, S.: NP-completeness of undirected Grundy numberings and related problems (1998, unpublished manuscript)

    Google Scholar 

  11. Gyárfás, A., Király, Z., Lehel, J.: On-line 3-chromatic graphs II. Critical graphs. Discret. Math. 177(1–3), 99–122 (1997). doi:10.1016/S0012-365X(96)00359-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Gyárfás, A., Lehel, J.: First-Fit and on-line chromatic number of families of graphs. Ars Comb. 29C, 168–176 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Hedetniemi, S.M., Hedetniemi, S.T., Beyer, T.: A linear algorithm for the Grundy (coloring) number of a tree. Congr. Numer. 36, 351–363 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Kierstead, H.A.: Coloring graphs on-line. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms. LNCS, vol. 1442, pp. 281–305. Springer, Heidelberg (1998). doi:10.1007/BFb0029574

    Chapter  Google Scholar 

  15. Kortsarz, G.: A lower bound for approximating Grundy numbering. Discret. Math. Theor. Comput. Sci. 9, 7–22 (2007)

    MATH  Google Scholar 

  16. Narayanaswamy, N.S., Babu, R.S.: A note on first-fit coloring of interval graphs. Order 25(1), 49–53 (2008). doi:10.1007/s11083-008-9076-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Zaker, M.: Results on the Grundy chromatic number of graphs. Discret. Math. 306(23), 3166–3173 (2006). doi:10.1016/j.disc.2005.06.044

    Article  MathSciNet  MATH  Google Scholar 

  18. Zaker, M.: New bounds for the chromatic number of graphs. J. Graph Theory 58(2), 110–122 (2008). doi:10.1002/jgt.20298

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Special thanks to D. Dereniowski, E. Drgas-Burchardt and anonymous referees for their remarks on preliminary version of this paper, and to S. Vishwanathan for sending the manuscript [10].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Borowiecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Borowiecki, P. (2017). On Computational Aspects of Greedy Partitioning of Graphs. In: Xiao, M., Rosamond, F. (eds) Frontiers in Algorithmics. FAW 2017. Lecture Notes in Computer Science(), vol 10336. Springer, Cham. https://doi.org/10.1007/978-3-319-59605-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59605-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59604-4

  • Online ISBN: 978-3-319-59605-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics