[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Real Time Two-Level Method for Fingertips Tracking and Number Identification in a Video

  • Conference paper
  • First Online:
Intelligent Interactive Multimedia Systems and Services 2017 (KES-IIMSS-18 2018)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 76))

  • 1693 Accesses

Abstract

This paper presents a real time method to estimate the number of fingers observed in a video. The method tracks the fingertips and exploits the shape of the hand contour to determine the number of fingers observed in a sequence of images. The first step of the proposed method is to detect the hand observed in the input image by segmentation into foreground and background areas using skin colour detection method. The foreground corresponds to the area representing the hand to be tracked. Due to the problem of the lighting variation, HSL colour space was used to represent the colour. The second step consists of computing the hand contour. Then a convex Hull and convexity defects are calculated to detect the fingertips. Principal components analysis (PCA) [13] method is applied on the convex hull to deal with the cases in which only one finger is observed in the image or when the hand is closed. The proposed method could be used to produce different Human Computer Interaction systems (HCI). Experimental results obtained from real images demonstrate the potential of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben Henia, O., Hariti, M., Bouakaz, S.: A two-step minimization algorithm for model-based hand tracking. In: WSCG (2010)

    Google Scholar 

  2. http://www.samsung.com/ph/smarttv/common/guide_book_3p_si/waving.html

  3. http://www.zdnet.com/article/control-your-mobile-without-your-hands-gesture-tech-coming-to-a-mobile-near-you-soon/

  4. Ben Henia, O., Bouakaz, S.: A new depth-based function for 3D hand motion tracking. In: Proceedings of the International Conference on Computer Vision Theory and Applications (VISIGRAPP 2011), pp. 653–658 (2011)

    Google Scholar 

  5. Bray, M., Koller-Meier, E., Mueller, P., Van Gool, L., Schraudolph, N.N.: 3D hand tracking by rapid stochastic gradient descent using a skinning model. In: Chambers, A., Hilton, A. (eds.) 1st European Conference on Visual Media Production (CVMP), pp. 59–68. IEEE, March 2004

    Google Scholar 

  6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  7. Delamarre, Q., Faugeras, O.: Finding pose of hand in video images: A stereo-based approach. In: IEEE Proceedings of the third International Conference on Automatic Face and Gesture Recognition, pp. 585–590. IEEE Computer Society (1998)

    Google Scholar 

  8. Dhawan, A., Honrao, V.: Implementation of hand detection based techniques for human computer interaction. Int. J. Comput. Appl. 72(17), 6–13 (2013)

    Google Scholar 

  9. Graham, R., Francesyao, F.: Finding the convex hull of a simple polygon. J. Algorithms 4(4), 324–331 (1983)

    Article  MathSciNet  Google Scholar 

  10. Heap, T., Hogg, D.: Towards 3D hand tracking using a deformable model. In: Face and Gesture Recognition, pp. 140–145 (1996)

    Google Scholar 

  11. Ben Henia, O., Bouakaz, S.: 3D hand model animation with a new data-driven method. In: Proceedings of the Workshop on Digital Media and Digital Content Management, DMDCM 2011, pp. 72–76. IEEE Computer Society, Washington, DC (2011)

    Google Scholar 

  12. Ike, T., Kishikawa, N., Stenger, B.: A real-time hand gesture interface implemented on a multi-core processor. In: MVA, pp. 9–12 (2007)

    Google Scholar 

  13. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2002)

    MATH  Google Scholar 

  14. Kato, M., Chen, Y.-W., Gang, X.: Articulated hand motion tracking using ica-based motion analysis and particle filtering. J. Multimedia 1(3), 52–60 (2006)

    Article  Google Scholar 

  15. Liang, H., Yuan, J., Thalmann, D.: 3D fingertip and palm tracking in depth image sequences. In: Proceedings of the 20th ACM International Conference on Multimedia, MM 2012, pp. 785–788. ACM, New York (2012)

    Google Scholar 

  16. Kato, M., Xu, G.: Occlusion-free hand motion tracking by multiple cameras and particle filtering with prediction. IJCSNS Int. J. Comput. Sci. Netw. Secur. 6(10), 58–65 (2006)

    Google Scholar 

  17. Montalvão, J., Molina, L., Canuto, J.: Robust hand image processing for biometric application. Pattern Anal. Appl. 13(4), 397–407 (2010)

    Article  MathSciNet  Google Scholar 

  18. Oka, K., Sato, Y., Koike, H.: Real-time fingertip tracking and gesture recognition. IEEE Comput. Graph. Appl. 22(6), 64–71 (2002)

    Article  Google Scholar 

  19. Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking from depth, June 2014

    Google Scholar 

  20. Rosales, R., Athitsos, V., Sigal, L., Sclaroff, S.: 3D hand pose reconstruction using specialized mappings. In: ICCV, pp. 378–385 (2001)

    Google Scholar 

  21. Shimada, N., Kimura, K., Shirai, Y.: Real-time 3-D hand posture estimation based on 2-D appearance retrieval using monocular camera. In: Proceedings of the IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems (RATFG-RTS 2001), p. 23. IEEE Computer Society, Washington, DC (2001)

    Google Scholar 

  22. Silanon, K., Suvonvorn, N.: Fingertips tracking based active contour for general HCI application, pp. 309–316. Springer, Singapore (2014)

    Google Scholar 

  23. Sridhar, S., Feit, A.M., Theobalt, C., Oulasvirta, A.: Investigating the dexterity of multi-finger input for mid-air text entry. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, pp. 3643–3652. ACM, New York (2015)

    Google Scholar 

  24. Sridhar, S., Mueller, F., Oulasvirta, A., Theobalt, C.: Fast and robust hand tracking using detection-guided optimization. In: Proceedings of Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  25. Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articulated hand motion tracking using RGB and depth data. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2013

    Google Scholar 

  26. Sridhar, S., Rhodin, H., Seidel, H.-P., Oulasvirta, A., Theobalt, C.: Real-time hand tracking using a sum of anisotropic gaussians model. In: Proceedings of the International Conference on 3D Vision (3DV), December 2014

    Google Scholar 

  27. Stenger, B., Mendonca, P.R.S., Cipolla, R.: Model-based 3D tracking of an articulated hand. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, pp. II–310–II–315 (2001)

    Google Scholar 

  28. Wang, R.Y., Popović, J.: Real-time hand-tracking with a color glove. In: ACM SIGGRAPH 2009 papers, pp. 1–8. ACM, New York (2009)

    Google Scholar 

  29. Wu, Y., Lin, J., Huang, T.S.: Analyzing and capturing articulated hand motion in image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1910–1922 (2005)

    Article  Google Scholar 

  30. Wu, Y., Lin, J.Y., Huang, T.S.: Capturing natural hand articulation. In: ICCV, pp. 426–432 (2001)

    Google Scholar 

  31. Yeo, H.-S., Lee, B.-G., Lim, H.: Hand tracking and gesture recognition system for human-computer interaction using low-cost hardware. Multimedia Tools Appl. 74(8), 2687–2715 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouissem Ben Henia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Ben Henia, O. (2018). A Real Time Two-Level Method for Fingertips Tracking and Number Identification in a Video. In: De Pietro, G., Gallo, L., Howlett, R., Jain, L. (eds) Intelligent Interactive Multimedia Systems and Services 2017. KES-IIMSS-18 2018. Smart Innovation, Systems and Technologies, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-59480-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59480-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59479-8

  • Online ISBN: 978-3-319-59480-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics