[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Ensemble Classifiers Approach for Emotion Classification

  • Conference paper
  • First Online:
Intelligent Interactive Multimedia Systems and Services 2017 (KES-IIMSS-18 2018)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 76))

  • 1712 Accesses

Abstract

Decoding the emotional state of a person has a variety of applications. It could be used in human-computer interaction (HCI) or like follow-ups in the therapeutic techniques. Recently, emotion recognition is one of topic that researchers are most interested in and until now, there are several studies relating to the emotion using devices and techniques. To recognize human emotions, various physiological signals have been widely used. In this research, we propose a novel approach for the emotion classification using several physiological signals to classify eight emotions according to the Clynes sentograph protocol of Manfred Clynes. The study has two main objectives. On the one hand a comparative study to choose the best classifiers that addresses the emotion classification problem. And On the other hand to develop an ensemble classifiers approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schacter, D.: Psychology, 2nd edn, p. 310. Worth Publishers, New York (2011). ISBN

    Google Scholar 

  2. Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)

    Article  Google Scholar 

  3. Izard, C.: Human Emotions. Plenum Press, New York (1977/2001)

    Google Scholar 

  4. Ortony, A., Turner, T.J.: What’s basic about basic emotions? Psychol. Rev. 97, 315–331 (1990)

    Article  Google Scholar 

  5. Darwin, C., Ekman, P., Prodger, P.: The Expression of the Emotions in Man and Animals. Oxford University Press, Oxford (1998)

    Google Scholar 

  6. Cannon, W.B.: The james-lange theory of emotions: A critical examination and an alternative theory. Am. J. Psychol. 39, 106–124 (1927)

    Article  Google Scholar 

  7. Damasio, A., Sutherland, S.: Descartes’ error: Emotion, reason and the human brain. Nature 372, 287–287 (1994)

    Article  Google Scholar 

  8. Plutchik, R.: The Emotions. University Press of America, New York (1991)

    Google Scholar 

  9. Lisa, F.: Valence focus and arousal focus: Individual differences in the structure of affective experience. J. Pers. Soc. Psychol. 69(1), 153–166 (1995)

    Article  Google Scholar 

  10. Clynes, M.: Sentography: Dynamic forms of communication of emotion and qualities. Comput. Biol. Med. 3, 119–130 (1972)

    Article  Google Scholar 

  11. Li, W., Xu, H.: Text-based emotion classification using emotion cause extraction. Expert Syst. Appl. 41(4), 1742–1749 (2014)

    Article  Google Scholar 

  12. Sheng, H.K., Mohamed, A.: 3D HMM-based facial expression recognition using histogram of oriented optical flow (2015)

    Google Scholar 

  13. Hongying, M., Nadia, B., Yangdong, D., Jinkuang, C.: Time-delay neural network for continuous emotional dimension prediction from (2015)

    Google Scholar 

  14. Muthusamy, H., Polat, K., Yaacob, S.: Improved emotion recognition using gaussian mixture model and extreme learning machine in speech and glottal signals. Math. Probl. Eng. 2015, 13 (2015). doi:10.1155/2015/394083. Article ID 394083

    Article  Google Scholar 

  15. Bhaskar, J., Sruthi, K., Nedungadi, P.: Hybrid approach for emotion classification of audio conversation based on text and speech mining. Procedia Comput. Sci. 46, 635–643 (2015)

    Article  Google Scholar 

  16. Park, B.J., Jang, E.H., Kim, S.H., Huh, C., Chung, M.A.: The design of fuzzy C-means clustering based neural networks for emotion classification. In IFSA World Congress and NAFIPS Annual Meeting, pp. 413–417 (2013)

    Google Scholar 

  17. Zheng, L., Zhu, Y., Peng, Y., Lu, L.: EEG-based emotion classification using deep belief networks. In: IEEE International Conference on Multimedia and Expo (2014)

    Google Scholar 

  18. Verma, G.K., Tiwary, U.S.: Multimodal fusion framework: A multiresolution approach for emotion classification and recognition from physiological signals. NeuroImage 102, 162–172 (2014)

    Article  Google Scholar 

  19. Lokannavar, S., Lahane, P., Gangurde, A., Chidre, P.: Emotion recognition using EEG signals. Emotion 4(5) (2015)

    Google Scholar 

  20. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1), 1–39 (2010)

    Article  MathSciNet  Google Scholar 

  21. Dietterich, T.G.: Ensemble methods in machine learning. In International Workshop on Multiple Classifier Systems, pp. 1–15 (2000)

    Google Scholar 

  22. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)

    MATH  Google Scholar 

  23. Vaish, A., Kumari, P.: A comparative study on machine learning algorithms in emotion state recognition using ECG. In: Proceedings of the Second International Conference on Soft Computing for Problem Solving (2014)

    Google Scholar 

  24. Mano, L.Y., Giancristofaro, G.T., Faical, B.S., Libralon, G.L., Pessin, G., Gomes, P.H., Ueyama, J.: Exploiting the use of ensemble classifiers to enhance the precision of user’s emotion classification. In: International Conference on Engineering Applications Of Neural Networks (INNS) (2015)

    Google Scholar 

  25. Sun, Y., Wen, G.: Ensemble softmax regression model for speech emotion recognition. Multimed.Tools Appl. 76(6), 1–24 (2016)

    Google Scholar 

  26. Perikos, I., Hatzilygeroudis, I.: Recognizing emotions in text using ensemble of classifiers. Eng. Appl. Artif. Intell. 51, 191–201 (2016)

    Article  Google Scholar 

  27. Rani, P.I., Muneeswaran, K.: Recognize the facial emotion in video sequences using eye and mouth temporal gabor features. Multim. Tools Appl. 76(7), 1–24 (2016)

    Google Scholar 

  28. Jain, S., Durgesh, M., Ramesh, T.: Facial expression recognition using variants of LBP and classifier fusion. In: Proceedings of International Conference on ICT for Sustainable Development, pp. 725–732 (2016)

    Google Scholar 

  29. Neoh, S.C., Mistry, K., Zhang, L., Lim, C.P., Fielding, B.: A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition (2016)

    Google Scholar 

  30. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  31. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  32. Langley, P., Iba, W., Thompson, K.: An analysis of bayesian classifiers. In: National Conference on Artificial Intelligence, pp. 223–228 (1992)

    Google Scholar 

  33. Cao, Y., Wu, J.: Projective ART for clustering data sets in high dimensional spaces. Neural Netw. 15(1), 105–120 (2002)

    Article  Google Scholar 

  34. Haijian, S.: Best-first decision tree learning. Hamilton, NZ (2007)

    Google Scholar 

  35. Gaines, B.R., Compton, J.P.: Induction of ripple-down rules applied to modeling large databases. Intell. Inf. Syst. 5(3), 211–228 (1995)

    Article  Google Scholar 

  36. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 59, 161 (2005)

    Article  MATH  Google Scholar 

  37. Cleary, J.G., Trigg, L.E.: K*: An instance-based learner using an entropic distance measure. In: 12th International Conference on Machine Learning (1995)

    Google Scholar 

  38. Healey, J., Picard, R.W.: Eight-emotion sentics data (2002). http://affect.media.mit.edu. Retrieved 12 Aug 2016

  39. http://www.cs.waikato.ac.nz/ml/weka/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Walid Chaibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Chaibi, M.W. (2018). An Ensemble Classifiers Approach for Emotion Classification. In: De Pietro, G., Gallo, L., Howlett, R., Jain, L. (eds) Intelligent Interactive Multimedia Systems and Services 2017. KES-IIMSS-18 2018. Smart Innovation, Systems and Technologies, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-59480-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59480-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59479-8

  • Online ISBN: 978-3-319-59480-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics