Abstract
Magnetic resonance elastography (MRE) has been used to estimate myocardial stiffness. However, inversion methods typically introduce unrealistic assumptions. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with added Gaussian noise and isotropic phantom MRE data. Two material model formulations were implemented, estimating three and five material properties. In the LV model, mean estimated moduli were more accurate from the five-parameter estimation than the three-parameter estimation. In the isotropic phantom experiment, where the material was assigned an arbitrary fibre orientation, results accurately revealed an isotropic material (\(G_{\mathrm {12}}\) = \(G_{\mathrm {13}}\)) and estimated shear moduli were close to reference values. This preliminary investigation showed the feasibility and limitations of the VFM to identify transversely isotropic material properties from MRE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Augenstein, K.F., Cowan, B.R., LeGrice, I.J., Young, A.A.: Estimation of cardiac hyperelastic material properties from MRI tissue tagging and diffusion tensor imaging. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 628–635. Springer, Heidelberg (2006). doi:10.1007/11866565_77
Avril, S., Grédiac, M., Pierron, F.: Sensitivity of the virtual fields method to noisy data. Comput. Mech. 34(6), 439–452 (2004)
Chatelin, S., Charpentier, I., Corbin, N., Meylheuc, L., Vappou, J.: An automatic differentiation-based gradient method for inversion of the shear wave equation in magnetic resonance elastography: specific application in fibrous soft tissues. Phys. Med. Biol. 61(13), 5000–5019 (2016)
Connesson, N., Clayton, E.H., Bayly, P.V., Pierron, F.: The effects of noise and spatial sampling on identification of material parameters by magnetic resonance elastography. Mech. Biol. Syst. Mater. 5, 161–168 (2013)
Connesson, N., Clayton, E.H., Bayly, P.V., Pierron, F.: Extension of the optimised virtual fields method to estimate viscoelastic material parameters from 3D dynamic displacement fields. Strain 51(2), 110–134 (2015)
Couade, M., Pernot, M., Messas, E., Bel, A., Ba, M., Hagege, A., Fink, M., Tanter, M.: In vivo quantitative mapping of myocardial stiffening and transmural anisotropy during the cardiac cycle. IEEE Trans. Med. Imag. 30(2), 295–305 (2011)
Elgeti, T., Knebel, F., Hättasch, R., Hamm, B., Braun, J., Sack, I.: Shear-wave amplitudes measured with cardiac MR elastography for diagnosis of diastolic dysfunction. Radiology 271(3), 681–687 (2014)
Feng, Y., Okamoto, R.J., Namani, R., Genin, G.M., Bayly, P.V.: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–132 (2013)
Kolipaka, A., McGee, K.P., Araoz, P.A., Glaser, K.J., Manduca, A., Ehman, R.L.: Evaluation of a rapid, multiphase MRE sequence in a heart-simulating phantom. Magn. Reson. Med. 62(3), 691–698 (2009)
LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269(2), H571–H582 (1995)
Mazumder, R., et al.: In vivo quantification of myocardial stiffness in hypertensive porcine hearts using MR elastography. J. Magn. Reson. Imaging 45(3), 813–820 (2017)
Pierron, F., Bayly, P.V., Namani, R.: Application of the virtual fields method to magnetic resonance elastography data. In: Proul, T. (ed.) Application of Imaging Techniques to Mechanics of Materials and Structures. CPSEMS, vol. 4, pp. 135–142. Springer, New York (2013)
Pierron, F., Grediac, M.: The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements. Springer, New York (2012)
Romano, A.J., Shirron, J.J., Bucaro, J.A.: On the noninvasive determination of material parameters from a knowledge of elastic displacements: theory and numerical simulation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(3), 751–759 (1998)
Romano, A., Guo, J., Prokscha, T., Meyer, T., Hirsch, S., Braun, J., Sack, I., Scheel, M.: In vivo waveguide elastography: effects of neurodegeneration in patients with amyotrophic lateral sclerosis. Magn. Reson. Med. 72(6), 1755–1761 (2014)
Schmidt, J., Tweten, D., Benegal, A., Walker, C., Portnoi, T., Okamoto, R., Garbow, J., Bayly, P.: Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue. J. Biomech. 49(7), 1042–1049 (2016)
Tweten, D.J., Okamoto, R.J., Bayly, P.V.: Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: a computational study. Magn. Reson. Med. (2017)
Tweten, D.J., Okamoto, R.J., Schmidt, J.L., Garbow, J.R., Bayly, P.V.: Estimation of material parameters from slow and fast shear waves in an incompressible, transversely isotropic material. J. Biomech. 48, 4002–4009 (2015)
Wassenaar, P.A., Eleswarpu, C.N., Schroeder, S.A., Mo, X., Raterman, B.D., White, R.D., Kolipaka, A.: Measuring age-dependent myocardial stiffness across the cardiac cycle using MR elastography: a reproducibility study. Magn. Reson. Med. 75, 1586–1593 (2015)
Xi, J., Lamata, P., Niederer, S., Land, S., Shi, W., Zhuang, X., Ourselin, S., Duckett, S.G., Shetty, A.K., Rinaldi, C.A., Rueckert, D., Razavi, R., Smith, N.P.: The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17(2), 133–146 (2013)
Zile, M.R., Baicu, C.F., Gaasch, W.H.: Diastolic heart failure-abnormalities in active relaxation and passive stiffness of the left ventricle. N. Engl. J. Med. 350(19), 1953–1959 (2004)
Acknowledgements
This research was supported by an award from the National Heart Foundation of New Zealand, American Heart Association 13SDG14690027, NHLBI R01HL124096 and The Royal Society of New Zealand Marsden Fund. The authors wish to acknowledge NeSI high performance computing facilities (https://www.nesi.org.nz) for their support of this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Miller, R., Kolipaka, A., Nash, M.P., Young, A.A. (2017). Identification of Transversely Isotropic Properties from Magnetic Resonance Elastography Using the Optimised Virtual Fields Method. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_40
Download citation
DOI: https://doi.org/10.1007/978-3-319-59448-4_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59447-7
Online ISBN: 978-3-319-59448-4
eBook Packages: Computer ScienceComputer Science (R0)