Abstract
EMS (Energy management system) is a collection of computer hardware and software, which collects, monitors, controls and optimizes data provided by power control system, and provide trading scheme, security services and service analysis for power market. The prediction of status data is a basic function module of advanced application software systems. Therefore it is meaningful to do research on new method and new technology of predicting power grid status data. In this paper, support vector machine is used to do regression prediction for active power of EMS. In training process, the training set and kernel function of SVM are selected, and parameters are optimized, also, the performance of SVM is evaluated. Experiments show that SVM can get higher accuracy in short term active power prediction although the data set is small. This paper provides a new idea for related research works in electric power industry system.
Funded by the national high technology research and development program (863 Program) (No. 2015AA050204)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lorenz, E., Hurka, J., Heinemann, D., et al.: Irradiance forecasting for the power prediction of grid-connected photovoltaic systems. IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 2(1), 2–10 (2009)
Rudin, C., Waltz, D., Anderson, R.N., et al.: Machine learning for the New York City power grid. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 328–345 (2012)
Louka, P., Galanis, G., Siebert, N., et al.: Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J. Wind Eng. Ind. Aerodyn. 96(12), 2348–2362 (2008)
Mabel, M.C., Fernandez, E.: Analysis of wind power generation and prediction using ANN: A case study. Renew. Energy 33(5), 986–992 (2008)
Cherkassky, V., Ma, Y.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17(1), 113–126 (2004)
Basak, D., Pal, S., Patranabis, D.C.: Support vector regression. Neural Inf. Process. Lett. Rev. 11(10), 203–224 (2007)
Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)
Kara, Y., Boyacioglu, M.A., Baykan, Ö.K.: Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange. Expert Syst. Appl. 38(5), 5311–5319 (2011)
Box, G.E.P., Jenkins, G.M., Reinsel, G.C., et al.: Time Series Analysis: Forecasting and Control. Wiley, New York (2015)
Wei, G., Ling, Y., Guo, B., et al.: Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman filter. Comput. Commun. 34(6), 793–802 (2011)
Hamzacebi, C., Es, H.A.: Forecasting the annual electricity consumption of Turkey using an optimized grey model. Energy 70, 165–171 (2014)
Wang, S., Hsu, C.H., Liang, Z., et al.: Multi-user web service selection based on multi-QoS prediction. Inf. Syst. Front. 16(1), 143–152 (2014)
Maji, S., Berg, A.C., Malik, J.: Efficient classification for additive kernel SVMs. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 66–77 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Su, J., Yang, Y., Yan, D., Tang, Y., Mu, Z. (2017). Research on Short-Term Prediction of Power Grid Status Data Based on SVM. In: Wang, S., Zhou, A. (eds) Collaborate Computing: Networking, Applications and Worksharing. CollaborateCom 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 201. Springer, Cham. https://doi.org/10.1007/978-3-319-59288-6_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-59288-6_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59287-9
Online ISBN: 978-3-319-59288-6
eBook Packages: Computer ScienceComputer Science (R0)