[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

How to Win Elections

  • Conference paper
  • First Online:
Collaborate Computing: Networking, Applications and Worksharing (CollaborateCom 2016)

Abstract

Consider an election with two competing candidates and a set of voters whose opinions change over time. We study the best strategies that can be used by each candidate to influence voters. We also evaluate the knowledge advantage when one of the candidates knows in advance the adversary’s strategy. We prove that an economy of up to 50% of the budget can be saved in such a scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hendrikx, F., Bubendorfer, K., Chard, R.: Reputation systems: a survey and taxonomy. J. Parallel Distrib. Comput. 75, 184–197 (2015)

    Article  Google Scholar 

  2. Block Chain Principle. http://blockchain.info

  3. Altman, E., Kumar, P., Venkatramanan, S., Kumar, A.: Competition over timeline in social networks. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1352–1357. IEEE (2013)

    Google Scholar 

  4. Neglia, G., Ye, X., Gabielkov, M., Legout, A.: How to network in online social networks. In: 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 819–824. IEEE (2014)

    Google Scholar 

  5. Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in social networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 539–550. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17572-5_48

    Chapter  Google Scholar 

  6. Chen, L., Leneutre, J.: Fight jamming with jamming-a game theoretic analysis of jamming attack in wireless networks and defense strategy. Comput. Netw. 55(9), 2259–2270 (2011)

    Article  Google Scholar 

  7. Stackoverflow. http://stackoverflow.com/

  8. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputation management in p2p networks. In: Proceedings of the 12th International Conference on World Wide Web, pp. 640–651. ACM (2003)

    Google Scholar 

  9. Bradai, A., Ben-Ameur, W., Afifi, H.: Byzantine resistant reputation-based trust management. In: 2013 9th International Conference Conference on Collaborative Computing: Networking, Applications and Worksharing (Collaboratecom), pp. 269–278. IEEE (2013)

    Google Scholar 

  10. Twitter. http://twitter.com

  11. Facebook. http://www.facebook.com

  12. Chen, K., Liu, G., Shen, H., Qi, F.: Sociallink: utilizing social network and transaction links for effective trust management in P2P file sharing systems. In: 2015 IEEE International Conference on Peer-to-Peer Computing (P2P), pp. 1–10. IEEE (2015)

    Google Scholar 

  13. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    Article  MATH  Google Scholar 

  14. Krause, U.: A discrete nonlinear and non-autonomous model of consensus formation. In: Communications in Difference Equations, pp. 227–236 (2000)

    Google Scholar 

  15. Acemoglu, D., Ozdaglar, A.: Opinion dynamics and learning in social networks. Dyn. Games Appl. 1(1), 3–49 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ben-Ameur, W., Bianchi, P., Jakubowicz, J.: Robust distributed consensus using total variation. IEEE Trans. Autom. Control 61(6), 1550–1564 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ben-Ameur, W., Bianchi, P., Jakubowicz, J.: Robust average consensus using total variation gossip algorithm. In: 2012 6th International Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS), pp. 99–106. IEEE (2012)

    Google Scholar 

  18. Erdos, P., Renyi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  19. Penrose, M.: Random Geometric Graphs (No. 5). Oxford University Press (2003)

    Google Scholar 

  20. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gurobi optimizer reference manual. http://www.gurobi.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Sobehy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Sobehy, A., Ben-Ameur, W., Afifi, H., Bradai, A. (2017). How to Win Elections. In: Wang, S., Zhou, A. (eds) Collaborate Computing: Networking, Applications and Worksharing. CollaborateCom 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 201. Springer, Cham. https://doi.org/10.1007/978-3-319-59288-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59288-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59287-9

  • Online ISBN: 978-3-319-59288-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics