[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Local Guarantees in Graph Cuts and Clustering

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10328))

Abstract

Correlation Clustering is an elegant model that captures fundamental graph cut problems such as Min \(\,s-t\,\) Cut, Multiway Cut, and Multicut, extensively studied in combinatorial optimization. Here, we are given a graph with edges labeled \(+\) or − and the goal is to produce a clustering that agrees with the labels as much as possible: \(+\) edges within clusters and − edges across clusters. The classical approach towards Correlation Clustering (and other graph cut problems) is to optimize a global objective. We depart from this and study local objectives: minimizing the maximum number of disagreements for edges incident on a single node, and the analogous max min agreements objective. This naturally gives rise to a family of basic min-max graph cut problems. A prototypical representative is Min Max \(s-t\) Cut: find an \(s-t\) cut minimizing the largest number of cut edges incident on any node. We present the following results: (1) an \(O(\sqrt{n})\)-approximation for the problem of minimizing the maximum total weight of disagreement edges incident on any node (thus providing the first known approximation for the above family of min-max graph cut problems), (2) a remarkably simple 7-approximation for minimizing local disagreements in complete graphs (improving upon the previous best known approximation of 48), and (3) a -approximation for maximizing the minimum total weight of agreement edges incident on any node, hence improving upon the -approximation that follows from the study of approximate pure Nash equilibria in cut and party affiliation games.

M. Charikar and N. Gupta—Supported by NSF grants CCF-1617577, CCF-1302518 and a Simons Investigator Award.

R. Schwartz—Supported by ISF grant 1336/16.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\delta (S)\) denotes the collection of edges crossing the cut \((S,\overline{S})\).

  2. 2.

    Theorem 1 can be easily adapted to apply also for Min Max \(s-t\) Cut, Min Max Multiway Cut, and Min Max Multicut, resulting in a gap of .

  3. 3.

    The convexity of f is used only to show that relaxation (1) can be solved, and it is not required in the rounding process.

  4. 4.

    Note that \( E^+_{\text {heavy}}\subseteq E^+_0\subseteq E^+_{\text {bad}}\) and \(E^-_{\text {heavy}}\subseteq E^-_{\text {bad}}\).

References

  1. Ailon, N., Avigdor-Elgrabli, N., Liberty, E., van Zuylen, A.: Improved approximation algorithms for bipartite correlation clustering. SIAM J. Comput. 41(5), 1110–1121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM (JACM) 55(5), 23 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amit, N.: The bicluster graph editing problem. Ph.D. thesis, Tel Aviv University (2004)

    Google Scholar 

  4. Balcan, M.F., Blum, A., Mansour, Y.: Improved equilibria via public service advertising. In: SODA 2009, pp. 728–737 (2009)

    Google Scholar 

  5. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bansal, N., Feige, U., Krauthgamer, R., Makarychev, K., Nagarajan, V., Naor, J., Schwartz, R.: Min-max graph partitioning and small set expansion. SIAM J. Comput. 43(2), 872–904 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3–4), 281–297 (1999)

    Article  Google Scholar 

  8. Bhalgat, A., Chakraborty, T., Khanna, S.: Approximating pure nash equilibrium in cut, party affiliation, and satisfiability games. In: EC 2010, pp. 73–82 (2010)

    Google Scholar 

  9. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: FOCS 2003, pp. 524–533 (2003)

    Google Scholar 

  10. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP rounding algorithm for correlationclustering on complete and complete k-partite graphs. In: STOC 2015, pp. 219–228 (2015)

    Google Scholar 

  11. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Ismb, vol. 8, pp. 93–103 (2000)

    Google Scholar 

  12. Christodoulou, G., Mirrokni, V.S., Sidiropoulos, A.: Convergence and approximation in potential games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 349–360. Springer, Heidelberg (2006). doi:10.1007/11672142_28

    Chapter  Google Scholar 

  13. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. Theor. Comput. Sci. 361(2), 172–187 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, pp. 604–612. ACM (2004)

    Google Scholar 

  15. Filkov, V., Skiena, S.: Integrating microarray data by consensus clustering. Int. J. Artif. Intell. Tools 13(04), 863–880 (2004)

    Article  MATH  Google Scholar 

  16. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi) cut theorems and their applications. In: STOC 1993, pp. 698–707 (1993)

    Google Scholar 

  17. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data (TKDD) 3(1), 1 (2009)

    Article  Google Scholar 

  19. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Puleo, G., Milenkovic, O.: Correlation clustering and biclustering with locally bounded errors. In: Proceedings of the 33rd International Conference on Machine Learning, pp. 869–877 (2016)

    Google Scholar 

  21. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Svitkina, Z., Tardos, É.: Min-max multiway cut. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX/RANDOM -2004. LNCS, vol. 3122, pp. 207–218. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27821-4_19

    Chapter  Google Scholar 

  23. Swamy, C.: Correlation clustering: maximizing agreements via semidefinite programming. In: SODA 2004, pp. 526–527 (2004)

    Google Scholar 

  24. Symeonidis, P., Nanopoulos, A., Papadopoulos, A., Manolopoulos, Y.: Nearest-biclusters collaborative filtering with constant values. In: Nasraoui, O., Spiliopoulou, M., Srivastava, J., Mobasher, B., Masand, B. (eds.) WebKDD 2006. LNCS, vol. 4811, pp. 36–55. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77485-3_3

    Chapter  Google Scholar 

  25. Van Gael, J., Zhu, X.: Correlation clustering for crosslingual link detection. In: IJCAI, pp. 1744–1749 (2007)

    Google Scholar 

  26. Wirth, A.: Correlation clustering. In: Sammut, C., Webb, G. (eds.) Encyclopedia of Machine Learning, pp. 227–231. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Charikar, M., Gupta, N., Schwartz, R. (2017). Local Guarantees in Graph Cuts and Clustering. In: Eisenbrand, F., Koenemann, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2017. Lecture Notes in Computer Science(), vol 10328. Springer, Cham. https://doi.org/10.1007/978-3-319-59250-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59250-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59249-7

  • Online ISBN: 978-3-319-59250-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics