Abstract
Correlation Clustering is an elegant model that captures fundamental graph cut problems such as Min \(\,s-t\,\) Cut, Multiway Cut, and Multicut, extensively studied in combinatorial optimization. Here, we are given a graph with edges labeled \(+\) or − and the goal is to produce a clustering that agrees with the labels as much as possible: \(+\) edges within clusters and − edges across clusters. The classical approach towards Correlation Clustering (and other graph cut problems) is to optimize a global objective. We depart from this and study local objectives: minimizing the maximum number of disagreements for edges incident on a single node, and the analogous max min agreements objective. This naturally gives rise to a family of basic min-max graph cut problems. A prototypical representative is Min Max \(s-t\) Cut: find an \(s-t\) cut minimizing the largest number of cut edges incident on any node. We present the following results: (1) an \(O(\sqrt{n})\)-approximation for the problem of minimizing the maximum total weight of disagreement edges incident on any node (thus providing the first known approximation for the above family of min-max graph cut problems), (2) a remarkably simple 7-approximation for minimizing local disagreements in complete graphs (improving upon the previous best known approximation of 48), and (3) a -approximation for maximizing the minimum total weight of agreement edges incident on any node, hence improving upon the -approximation that follows from the study of approximate pure Nash equilibria in cut and party affiliation games.
M. Charikar and N. Gupta—Supported by NSF grants CCF-1617577, CCF-1302518 and a Simons Investigator Award.
R. Schwartz—Supported by ISF grant 1336/16.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\delta (S)\) denotes the collection of edges crossing the cut \((S,\overline{S})\).
- 2.
Theorem 1 can be easily adapted to apply also for Min Max \(s-t\) Cut, Min Max Multiway Cut, and Min Max Multicut, resulting in a gap of .
- 3.
The convexity of f is used only to show that relaxation (1) can be solved, and it is not required in the rounding process.
- 4.
Note that \( E^+_{\text {heavy}}\subseteq E^+_0\subseteq E^+_{\text {bad}}\) and \(E^-_{\text {heavy}}\subseteq E^-_{\text {bad}}\).
References
Ailon, N., Avigdor-Elgrabli, N., Liberty, E., van Zuylen, A.: Improved approximation algorithms for bipartite correlation clustering. SIAM J. Comput. 41(5), 1110–1121 (2012)
Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM (JACM) 55(5), 23 (2008)
Amit, N.: The bicluster graph editing problem. Ph.D. thesis, Tel Aviv University (2004)
Balcan, M.F., Blum, A., Mansour, Y.: Improved equilibria via public service advertising. In: SODA 2009, pp. 728–737 (2009)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)
Bansal, N., Feige, U., Krauthgamer, R., Makarychev, K., Nagarajan, V., Naor, J., Schwartz, R.: Min-max graph partitioning and small set expansion. SIAM J. Comput. 43(2), 872–904 (2014)
Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3–4), 281–297 (1999)
Bhalgat, A., Chakraborty, T., Khanna, S.: Approximating pure nash equilibrium in cut, party affiliation, and satisfiability games. In: EC 2010, pp. 73–82 (2010)
Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: FOCS 2003, pp. 524–533 (2003)
Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP rounding algorithm for correlationclustering on complete and complete k-partite graphs. In: STOC 2015, pp. 219–228 (2015)
Cheng, Y., Church, G.M.: Biclustering of expression data. In: Ismb, vol. 8, pp. 93–103 (2000)
Christodoulou, G., Mirrokni, V.S., Sidiropoulos, A.: Convergence and approximation in potential games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 349–360. Springer, Heidelberg (2006). doi:10.1007/11672142_28
Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. Theor. Comput. Sci. 361(2), 172–187 (2006)
Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, pp. 604–612. ACM (2004)
Filkov, V., Skiena, S.: Integrating microarray data by consensus clustering. Int. J. Artif. Intell. Tools 13(04), 863–880 (2004)
Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi) cut theorems and their applications. In: STOC 1993, pp. 698–707 (1993)
Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988)
Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data (TKDD) 3(1), 1 (2009)
Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)
Puleo, G., Milenkovic, O.: Correlation clustering and biclustering with locally bounded errors. In: Proceedings of the 33rd International Conference on Machine Learning, pp. 869–877 (2016)
Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)
Svitkina, Z., Tardos, É.: Min-max multiway cut. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX/RANDOM -2004. LNCS, vol. 3122, pp. 207–218. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27821-4_19
Swamy, C.: Correlation clustering: maximizing agreements via semidefinite programming. In: SODA 2004, pp. 526–527 (2004)
Symeonidis, P., Nanopoulos, A., Papadopoulos, A., Manolopoulos, Y.: Nearest-biclusters collaborative filtering with constant values. In: Nasraoui, O., Spiliopoulou, M., Srivastava, J., Mobasher, B., Masand, B. (eds.) WebKDD 2006. LNCS, vol. 4811, pp. 36–55. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77485-3_3
Van Gael, J., Zhu, X.: Correlation clustering for crosslingual link detection. In: IJCAI, pp. 1744–1749 (2007)
Wirth, A.: Correlation clustering. In: Sammut, C., Webb, G. (eds.) Encyclopedia of Machine Learning, pp. 227–231. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Charikar, M., Gupta, N., Schwartz, R. (2017). Local Guarantees in Graph Cuts and Clustering. In: Eisenbrand, F., Koenemann, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2017. Lecture Notes in Computer Science(), vol 10328. Springer, Cham. https://doi.org/10.1007/978-3-319-59250-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-59250-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59249-7
Online ISBN: 978-3-319-59250-3
eBook Packages: Computer ScienceComputer Science (R0)