[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Systematic Approach for the Application of Restricted Boltzmann Machines in Network Intrusion Detection

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10305))

Included in the following conference series:

Abstract

A few exploratory works studied Restricted Boltzmann Machines (RBMs) as an approach for network intrusion detection, but did it in a rather empirical way. It is possible to go one step further taking advantage from already mature theoretical work in the area. In this paper, we use RBMs for network intrusion detection showing that it is capable of learning complex datasets. We also illustrate an integrated and systematic way of learning. We analyze learning procedures and applications of RBMs and show experimental results for training RBMs on a standard network intrusion detection dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)

    Article  Google Scholar 

  2. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. In: Bottou, L., Chapelle, O., DeCoste, D., Weston, J. (eds.) Large-Scale Kernel Machines. MIT Press, Cambridge (2007)

    Google Scholar 

  4. Chen, H., Murray, A.F.: Continuous restricted Boltzmann machine with an implementable training algorithm. IEEE Proc. Vis. Image Sig. Process. 150(3), 153–158 (2003)

    Article  Google Scholar 

  5. Fiore, U., Palmieri, F., Castiglione, A., De Santis, A.: Network anomaly detection with the restricted Boltzmann machine. Neurocomputing 122, 13–23 (2013)

    Article  Google Scholar 

  6. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 599–619. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35289-8_32

    Chapter  Google Scholar 

  7. Hinton, G., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors, July 2012. arXiv:1207.0580 [cs.NE]

  10. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  MATH  Google Scholar 

  11. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ising, E.: Beitrag zur theorie des ferromagnetismus. Z. Phys. 31(1), 253–258 (1925)

    Article  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates (2012)

    Google Scholar 

  15. Movellan, J.R., Mineiro, P., Williams, R.J.: A Monte Carlo EM approach for partially observable diffusion processes: theory and applications to neural networks. Neural Comput. 14, 1507–1544 (2002)

    Article  MATH  Google Scholar 

  16. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Frnkranz, J., Joachims, T. (eds.) Proceedings of the 27th International Conference on Machine Learning, pp. 807–814. Omnipress (2010)

    Google Scholar 

  17. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958)

    Article  Google Scholar 

  19. Salakhutdinov, R.: Learning in Markov random fields using tempered transitions. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) NIPS, pp. 1598–1606. Curran Associates (2009)

    Google Scholar 

  20. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 31(3), 357–374 (2012)

    Article  Google Scholar 

  21. Smith, L.N., Hand, E.M., Doster, T.: Gradual DropIn of layers to train very deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4763–4771 (2016)

    Google Scholar 

  22. Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1: foundations, pp. 194–281. MIT Press (1986)

    Google Scholar 

  23. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: Proceedings of the Second IEEE International Conference on Computational Intelligence for Security and Defense Applications, CISDA 2009, pp. 53–58 (2009)

    Google Scholar 

  24. Teh, Y.W., Titterington, D.M. (eds.): Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (2010)

    Google Scholar 

  25. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Welling, M., Teh, Y.W.: Linear response algorithms for approximate inference in graphical models. Neural Comput. 16, 197–221 (2004)

    Article  MATH  Google Scholar 

  27. Zhao, X., Hou, Y., Yu, Q., Song, D., Li, W.: Understanding deep learning by revisiting Boltzmann machines: an information geometry approach (2013). CoRR, abs/1302.3931

    Google Scholar 

Download references

Acknowledgements

This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013 (INESC-ID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Correia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gouveia, A., Correia, M. (2017). A Systematic Approach for the Application of Restricted Boltzmann Machines in Network Intrusion Detection. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59153-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59152-0

  • Online ISBN: 978-3-319-59153-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics