Abstract
A few exploratory works studied Restricted Boltzmann Machines (RBMs) as an approach for network intrusion detection, but did it in a rather empirical way. It is possible to go one step further taking advantage from already mature theoretical work in the area. In this paper, we use RBMs for network intrusion detection showing that it is capable of learning complex datasets. We also illustrate an integrated and systematic way of learning. We analyze learning procedures and applications of RBMs and show experimental results for training RBMs on a standard network intrusion detection dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)
Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)
Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. In: Bottou, L., Chapelle, O., DeCoste, D., Weston, J. (eds.) Large-Scale Kernel Machines. MIT Press, Cambridge (2007)
Chen, H., Murray, A.F.: Continuous restricted Boltzmann machine with an implementable training algorithm. IEEE Proc. Vis. Image Sig. Process. 150(3), 153–158 (2003)
Fiore, U., Palmieri, F., Castiglione, A., De Santis, A.: Network anomaly detection with the restricted Boltzmann machine. Neurocomputing 122, 13–23 (2013)
Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 599–619. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35289-8_32
Hinton, G., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors, July 2012. arXiv:1207.0580 [cs.NE]
Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)
Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Ising, E.: Beitrag zur theorie des ferromagnetismus. Z. Phys. 31(1), 253–258 (1925)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates (2012)
Movellan, J.R., Mineiro, P., Williams, R.J.: A Monte Carlo EM approach for partially observable diffusion processes: theory and applications to neural networks. Neural Comput. 14, 1507–1544 (2002)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Frnkranz, J., Joachims, T. (eds.) Proceedings of the 27th International Conference on Machine Learning, pp. 807–814. Omnipress (2010)
Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)
Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958)
Salakhutdinov, R.: Learning in Markov random fields using tempered transitions. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) NIPS, pp. 1598–1606. Curran Associates (2009)
Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 31(3), 357–374 (2012)
Smith, L.N., Hand, E.M., Doster, T.: Gradual DropIn of layers to train very deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4763–4771 (2016)
Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1: foundations, pp. 194–281. MIT Press (1986)
Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: Proceedings of the Second IEEE International Conference on Computational Intelligence for Security and Defense Applications, CISDA 2009, pp. 53–58 (2009)
Teh, Y.W., Titterington, D.M. (eds.): Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (2010)
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)
Welling, M., Teh, Y.W.: Linear response algorithms for approximate inference in graphical models. Neural Comput. 16, 197–221 (2004)
Zhao, X., Hou, Y., Yu, Q., Song, D., Li, W.: Understanding deep learning by revisiting Boltzmann machines: an information geometry approach (2013). CoRR, abs/1302.3931
Acknowledgements
This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013 (INESC-ID).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Gouveia, A., Correia, M. (2017). A Systematic Approach for the Application of Restricted Boltzmann Machines in Network Intrusion Detection. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-59153-7_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59152-0
Online ISBN: 978-3-319-59153-7
eBook Packages: Computer ScienceComputer Science (R0)