Abstract
The paper is devoted to the problem of a neural network-based robust simultaneous actuator and sensor faults estimator design for the purpose of the Fault Diagnosis (FD) of non-linear systems. In particular, the methodology of designing a neural network-based \(\mathcal {H_\infty }\) fault estimator is developed. The main novelty of the approach is associated with possibly simultaneous sensor and actuator faults. For this purpose, a Linear Parameter Varying (LPV) description of a Recurrent Neural Network (RNN) is exploited. The proposed approach guaranties a predefined disturbance attenuation level and convergence of the estimator. The final part of the paper presents an illustrative example concerning the application of the proposed approach to the multi-tank system fault diagnosis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbas, H., Werner, H.: Polytopic quasi-LPV models based on neural state-space models and application to air charge control of a SI engine. In: Proceedings of the 17th World Congress the International Federation of Automatic Control, Seoul, Korea, pp. 6466–6471 (2008)
Bendtsen, J.D., Trangbæk, K.: Robust quasi-LPV control based on neural state space models. IEEE Trans. Neural Netw. 13(2), 355–368 (2002)
Blesa, J., Rotondo, D., Puig, V., Nejjari, F.: FDI and FTC of wind turbines using the interval observer approach and virtual actuators/sensors. Control Eng. Pract. 24, 138–155 (2014)
Chen, L., Patton, R., Goupil, P.: Robust fault estimation using an LPV reference model: ADDSAFE benchmark case study. Control Eng. Pract. 49, 194–203 (2015)
de Oliveira, M.C., Bernussou, J., Geromel, J.C.: A new discrete-time robust stability condition. Syst. Control Lett. 37(4), 261–265 (1999)
Ducard, G.: Fault-tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles. Springer, Berlin (2009)
Gao, Z.-F., Lin, J.-X., Cao, T.: Robust fault tolerant tracking control design for a linearized hypersonic vehicle with sensor fault. Int. J. Control Autom. Syst. 13(3), 672–679 (2015)
Haykin, S.: Neural Networks and Learning Machines. Prentice Hall, New York (2009)
INTECO: Multitank System - User’s manual (2013). www.inteco.com.pl
Isermann, R.: Fault Diagnosis Applications: Model Based Condition Monitoring, Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems. Springer, Berlin (2011)
Li, H., Fu, M.: A linear matrix inequality approach to robust \({H}_\infty \) filtering. IEEE Trans. Sig. Process. 45(9), 2338–2350 (1997)
Li, L., Ding, S.X., Yang, Y., Zhang, Y.: Robust fuzzy observer-based fault detection for nonlinear systems with disturbances. Neurocomputing 174, Part B, 767–772 (2016)
Mahmoud, M., Jiang, J., Zhang, Y.: Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis. Springer, Berlin (2003)
Mrugalski, M.: Advanced Neural Network-based Computational Schemes for Robust Fault Diagnosis. Springer, Heidelberg (2014)
Mrugalski, M., Luzar, M., Pazera, M., Witczak, M., Aubrun, C.: Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system. ISA Trans. 61, 318–328 (2016)
Noura, H., Theilliol, D., Ponsart, J.C., Chamseddine, A.: Fault-tolerant Control Systems: Design and Practical Applications. Springer, London (2009)
Péni, T., Vanek, B., Szabó, Z., Bokor, J.: Supervisory fault tolerant control of the GTM UAV using LPV methods. Int. J. Appl. Math. Comput. Sci. 25(1), 117–131 (2015)
Rotondo, D., Nejjari, F., Puig, V.: Robust quasi-LPV model reference FTC of a quadrotor uav subject to actuator faults. Int. J. Appl. Math. Comput. Sci. 25(1), 7–22 (2015)
Seybold, L., Witczak, M., Majdzik, P., Stetter, R.: Towards robust predictive fault-tolerant control for a battery assembly system. Int. J. Appl. Math. Comput. Sci. 25(4), 849–862 (2015)
Tayarani-Bathaie, S.S., Vanini, Z.N.S., Khorasani, K.: Dynamic neural network-based fault diagnosis of gas turbine engines. Neurocomputing 125, 153–165 (2014)
Witczak, M.: Toward the training of feed-forward neural networks with the \(\text{ D }\)-optimum input sequence. IEEE Trans. Neural Netw. 17(2), 357–373 (2006)
Witczak, M.: Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems: Analytical and Soft Computing approaches. Springer International Publishing, Heidelberg, Germany (2014)
Yang, H., Wang, H.: Robust adaptive fault-tolerant control for uncertain nonlinear system with unmodeled dynamics based on fuzzy approximation. Neurocomputing 173, Part 3, 1660–1670 (2016)
Yao, L., Feng, L.: Fault diagnosis and fault tolerant tracking control for the non-Gaussian singular time-delayed stochastic distribution system with PDF approximation error. Neurocomputing 175, Part A, 538–543 (2016)
Zemouche, A., Boutayeb, M., Bara, G.I.: Observers for a class of lipschitz systems with extension to \({H}_\infty \) performance analysis. Syst. Control Lett. 57(1), 18–27 (2008)
Acknowledgements
The work was supported by the National Science Centre of Poland under grant: 2013/11/B/ST7/01110.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Pazera, M., Witczak, M., Mrugalski, M. (2017). Neural Network-Based Simultaneous Estimation of Actuator and Sensor Faults. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-59153-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59152-0
Online ISBN: 978-3-319-59153-7
eBook Packages: Computer ScienceComputer Science (R0)