[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Neural Network-Based Simultaneous Estimation of Actuator and Sensor Faults

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10305))

Included in the following conference series:

Abstract

The paper is devoted to the problem of a neural network-based robust simultaneous actuator and sensor faults estimator design for the purpose of the Fault Diagnosis (FD) of non-linear systems. In particular, the methodology of designing a neural network-based \(\mathcal {H_\infty }\) fault estimator is developed. The main novelty of the approach is associated with possibly simultaneous sensor and actuator faults. For this purpose, a Linear Parameter Varying (LPV) description of a Recurrent Neural Network (RNN) is exploited. The proposed approach guaranties a predefined disturbance attenuation level and convergence of the estimator. The final part of the paper presents an illustrative example concerning the application of the proposed approach to the multi-tank system fault diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, H., Werner, H.: Polytopic quasi-LPV models based on neural state-space models and application to air charge control of a SI engine. In: Proceedings of the 17th World Congress the International Federation of Automatic Control, Seoul, Korea, pp. 6466–6471 (2008)

    Google Scholar 

  2. Bendtsen, J.D., Trangbæk, K.: Robust quasi-LPV control based on neural state space models. IEEE Trans. Neural Netw. 13(2), 355–368 (2002)

    Article  Google Scholar 

  3. Blesa, J., Rotondo, D., Puig, V., Nejjari, F.: FDI and FTC of wind turbines using the interval observer approach and virtual actuators/sensors. Control Eng. Pract. 24, 138–155 (2014)

    Article  Google Scholar 

  4. Chen, L., Patton, R., Goupil, P.: Robust fault estimation using an LPV reference model: ADDSAFE benchmark case study. Control Eng. Pract. 49, 194–203 (2015)

    Article  Google Scholar 

  5. de Oliveira, M.C., Bernussou, J., Geromel, J.C.: A new discrete-time robust stability condition. Syst. Control Lett. 37(4), 261–265 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ducard, G.: Fault-tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  7. Gao, Z.-F., Lin, J.-X., Cao, T.: Robust fault tolerant tracking control design for a linearized hypersonic vehicle with sensor fault. Int. J. Control Autom. Syst. 13(3), 672–679 (2015)

    Article  Google Scholar 

  8. Haykin, S.: Neural Networks and Learning Machines. Prentice Hall, New York (2009)

    Google Scholar 

  9. INTECO: Multitank System - User’s manual (2013). www.inteco.com.pl

  10. Isermann, R.: Fault Diagnosis Applications: Model Based Condition Monitoring, Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  11. Li, H., Fu, M.: A linear matrix inequality approach to robust \({H}_\infty \) filtering. IEEE Trans. Sig. Process. 45(9), 2338–2350 (1997)

    Article  Google Scholar 

  12. Li, L., Ding, S.X., Yang, Y., Zhang, Y.: Robust fuzzy observer-based fault detection for nonlinear systems with disturbances. Neurocomputing 174, Part B, 767–772 (2016)

    Google Scholar 

  13. Mahmoud, M., Jiang, J., Zhang, Y.: Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis. Springer, Berlin (2003)

    MATH  Google Scholar 

  14. Mrugalski, M.: Advanced Neural Network-based Computational Schemes for Robust Fault Diagnosis. Springer, Heidelberg (2014)

    Book  MATH  Google Scholar 

  15. Mrugalski, M., Luzar, M., Pazera, M., Witczak, M., Aubrun, C.: Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system. ISA Trans. 61, 318–328 (2016)

    Article  Google Scholar 

  16. Noura, H., Theilliol, D., Ponsart, J.C., Chamseddine, A.: Fault-tolerant Control Systems: Design and Practical Applications. Springer, London (2009)

    Book  MATH  Google Scholar 

  17. Péni, T., Vanek, B., Szabó, Z., Bokor, J.: Supervisory fault tolerant control of the GTM UAV using LPV methods. Int. J. Appl. Math. Comput. Sci. 25(1), 117–131 (2015)

    Article  MATH  Google Scholar 

  18. Rotondo, D., Nejjari, F., Puig, V.: Robust quasi-LPV model reference FTC of a quadrotor uav subject to actuator faults. Int. J. Appl. Math. Comput. Sci. 25(1), 7–22 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Seybold, L., Witczak, M., Majdzik, P., Stetter, R.: Towards robust predictive fault-tolerant control for a battery assembly system. Int. J. Appl. Math. Comput. Sci. 25(4), 849–862 (2015)

    Article  MATH  Google Scholar 

  20. Tayarani-Bathaie, S.S., Vanini, Z.N.S., Khorasani, K.: Dynamic neural network-based fault diagnosis of gas turbine engines. Neurocomputing 125, 153–165 (2014)

    Article  Google Scholar 

  21. Witczak, M.: Toward the training of feed-forward neural networks with the \(\text{ D }\)-optimum input sequence. IEEE Trans. Neural Netw. 17(2), 357–373 (2006)

    Article  Google Scholar 

  22. Witczak, M.: Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems: Analytical and Soft Computing approaches. Springer International Publishing, Heidelberg, Germany (2014)

    Book  MATH  Google Scholar 

  23. Yang, H., Wang, H.: Robust adaptive fault-tolerant control for uncertain nonlinear system with unmodeled dynamics based on fuzzy approximation. Neurocomputing 173, Part 3, 1660–1670 (2016)

    Google Scholar 

  24. Yao, L., Feng, L.: Fault diagnosis and fault tolerant tracking control for the non-Gaussian singular time-delayed stochastic distribution system with PDF approximation error. Neurocomputing 175, Part A, 538–543 (2016)

    Google Scholar 

  25. Zemouche, A., Boutayeb, M., Bara, G.I.: Observers for a class of lipschitz systems with extension to \({H}_\infty \) performance analysis. Syst. Control Lett. 57(1), 18–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Science Centre of Poland under grant: 2013/11/B/ST7/01110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Pazera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pazera, M., Witczak, M., Mrugalski, M. (2017). Neural Network-Based Simultaneous Estimation of Actuator and Sensor Faults. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59153-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59152-0

  • Online ISBN: 978-3-319-59153-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics