[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Polynomial Time Algorithm for Inferring Subclasses of Parallel Internal Column Contextual Array Languages

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10256))

Included in the following conference series:

Abstract

In [2, 16] a new method of description of pictures of digitized rectangular arrays is introduced based on contextual grammars, called parallel internal contextual array grammars. In this paper, we pay our attention on parallel internal column contextual array grammars and observe that the languages generated by these grammars are not inferable from positive data only. We define two subclasses of parallel internal column contextual array languages, namely, k-uniform and strictly parallel internal column contextual languages which are incomparable and not disjoint classes and provide identification algorithms to learn these classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In an 1-sided contextual rule either left context is \(\varLambda \) or right context is \(\varLambda \).

References

  1. Chandra, H., Martin-Vide, C., Subramanian, K.G., Van, D.L., Wang, P.S.P.: Parallel contextual array grammars and trajectories. In: Chen, C.H., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 3rd edn., pp. 55-70 (2004)

    Google Scholar 

  2. Chandra, H., Subramanian, K.G., Thomas, D.G.: Parallel contextual array grammars and languages. Electron. Notes Discrete Math. 12, 106–117 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ehrenfeucht, A., Paun, G., Rozenberg, G.: Contextual grammars and formal languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Language, vol. 2, pp. 237–293 (1997)

    Google Scholar 

  4. Emerald, J.D., Subramanian, K.G., Thomas, D.G.: Inferring subclasses of contextual languages. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS, vol. 1891, pp. 65–74. Springer, Heidelberg (2000). doi:10.1007/978-3-540-45257-7_6

    Chapter  Google Scholar 

  5. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fernau, H., Freund, R., Holzer, M.: Representations of recursively enumerable array languages by contextual array grammars. Fundamenta Informatica 64, 159–170 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Fernau, H., Freund, R., Siromoney, R., Subramanian, K.G.: Contextual array grammars with matrix and regular control. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 98–110. Springer, Cham (2016). doi:10.1007/978-3-319-41114-9_8

    Chapter  Google Scholar 

  8. Fernau, H., Freund, R., Siromoney, R., Subramanian, K.G.: Non-isometric contextual array grammars with regular control and local selectors. In: Durand-Lose, J., Nagy, B. (eds.) MCU 2015. LNCS, vol. 9288, pp. 61–78. Springer, Cham (2015). doi:10.1007/978-3-319-23111-2_5

    Chapter  Google Scholar 

  9. Haussler, D.: Insertion and iterated insertion as operations on formal languages. Ph.D. Thesis, University of Colorado, Boulder (1982)

    Google Scholar 

  10. Kari, L.: Contextual insertions/deletions and computability. Inf. Comput. 1, 47–61 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Krithivasan, K., Balan, M.S., Rama, R.: Array contextual grammars. In: Martin-Vide, C., Paun, G. (eds.) Recent Topics in Mathematical and Computational Linguistics, pp. 154-168 (2000)

    Google Scholar 

  12. Lalitha, D., Rangarajan, K., Thomas, D.G.: Petri net generating hexagonal arrays. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 235–247. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21073-0_22

    Chapter  Google Scholar 

  13. Marcus, S.: Contextual grammars. Revue Roumane de Mathematiques Pures et Appliques 14(10), 1525–1534 (1969)

    MathSciNet  MATH  Google Scholar 

  14. Rama, R., Smitha, T.A.: Some results on array contextual grammars. Int. J. Pattern Recogn. Artif. Intell. 14, 537–550 (2000)

    Google Scholar 

  15. Rosenfield, A., Siromoney, R.: Picture languages - a survey. Lang. Design 1, 229–245 (1993)

    Google Scholar 

  16. Subramanian, K.G., Van, D.L., Chandra, P.H., Quyen, N.D.: Array grammars with contextual operations. Fundamenta Informaticae 83, 1–18 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhisek Midya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Midya, A., Thomas, D.G., Pani, A.K., Malik, S., Bhatnagar, S. (2017). Polynomial Time Algorithm for Inferring Subclasses of Parallel Internal Column Contextual Array Languages. In: Brimkov, V., Barneva, R. (eds) Combinatorial Image Analysis. IWCIA 2017. Lecture Notes in Computer Science(), vol 10256. Springer, Cham. https://doi.org/10.1007/978-3-319-59108-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59108-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59107-0

  • Online ISBN: 978-3-319-59108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics