Abstract
This paper presents an overview of the cognitive aspects of content recommendation process in large heterogeneous knowledge repositories and their applications to design algorithms of incremental learning of users’ preferences, emotions, and satisfaction. This allows the recommendation procedures to align to the present and expected cognitive states of a user, increasing the combined recommendation and repository use efficiency. The learning algorithm takes into account the results of the cognitive and neural modelling of users’ decision behaviour. Inspirations from nature used in recommendation systems differ from the usual mimicking the biological neural processes. Specifically, a cognitive knowledge recommender may follow a strategy to discover emotional patterns in user behaviour and then adjust the recommendation procedure accordingly. The knowledge of cognitive decision mechanisms helps to optimize recommendation goals. Other cognitive recommendation procedures assist users in creating consistent learning or research groups. The primary application field of the above algorithms is a large knowledge repository coupled with an innovative training platform developed within an ongoing Horizon 2020 research project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adomavicius, G., Kwon, Y.O.: Multicriteria recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 847–880. Springer, Heidelberg (2015)
Aher, S.B., Lobo, L.: Combination of machine learning algorithms for recommendation of courses in e-learning system based on historical data. Knowl. Based Syst. 51, 1–14 (2013)
Bobadilla, J., Ortega, F., Hernando, A., Alcalá, J.: Improving collaborative filtering recommender system results and performance using genetic algorithms. Knowl. Based Syst. 24(8), 1310–1316 (2011). doi:10.1016/j.knosys.2011.06.005
Bobadilla, J., Ortega, F., Hernando, A., Gutierrez, A.: Recommender systems survey. Knowl. Based Syst. 46, 109–132 (2013)
Bobadilla, J., Serradilla, F., Hernando, A.: Collaborative filtering adapted to recommender systems of e-learning. Knowl. Based Syst. 22, 261–265 (2009)
Cechinel, C., Camargo, S.D.S., Sánchez-Alonso, S., Sicilia, M.A.: Towards automated evaluation of learning resources inside repositories. In: Manouselis, N., Drachsler, H., Verbert, K., Santos, O.C. (eds.) Recommender Systems for Technology Enhanced Learning: Research Trends and Applications, pp. 25–46. Springer, New York (2014). doi:10.1007/978-1-4939-0530-0_2
Chen, L.S., Hsu, F.H., Chen, M.C., Hsu, Y.C.: Developing recommender systems with the consideration of product profitability for sellers. Inf. Sci. 178, 1032–1048 (2008)
Chen, W., Niu, Z., Zhao, X., Li, Y.: A hybrid recommendation algorithm adapted in e-learning environments. World Wide Web 17, 271–284 (2014)
Cho, J., Kwon, K., Park, Y.: Q-rater: a collaborative reputation system based on source credibility theory. Expert Syst. Appl. 36, 3751–3760 (2009)
Diaz, A., Motz, R., Rohrer, E., Tansini, L.: An ontology network for educational recommender systems. In: Santos, O., Boticario, J. (eds.) Educational Recommender Systems and Technologies: Practices and Challenges, pp. 67–93. IGI Global, Hershey (2012). doi:10.4018/978-1-61350-489-5.ch004
Erdt, M., Fernández, A., Rensing, C.: Evaluating recommender systems for technology enhanced learning: a quantitative survey. IEEE Trans. Learn. Technol. 8(4), 326–344 (2015). doi:10.1109/TLT.2015.2438867
Fernández, A., Anjorin, M., Dackiewicz, I., Rensing, C.: Recommendations from heterogeneous sources in a technology enhanced learning ecosystem. In: Manouselis, N., Drachsler, H., Verbert, K., Santos, O.C. (eds.) Recommender Systems for Technology Enhanced Learning: Research Trends and Applications, pp. 251–265. Springer, New York (2014). doi:10.1007/978-1-4939-0530-0_12
Gligor, V., Wing, J.M.: Towards a theory of trust in networks of humans and computers. In: Christianson, B., Crispo, B., Malcolm, J., Stajano, F. (eds.) Security Protocols 2011. LNCS, vol. 7114, pp. 223–242. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25867-1_22
Katarya, R., Verma, O.P.: Recent developments in affective recommender systems. Phys. A 461, 182–190 (2016)
Khribi, M.K., Jemni, M., Nasraoui, O.: Automatic recommendations for e-learning personalization based on web usage mining techniques and information retrieval. Educ. Technol. Soc. 12(4), 30–42 (2009)
Manouselis, N., Drachsler, H., Verbert, K., Duval, E.: Recommender Systems for Learning, p. 90. Springer, Berlin (2012)
Lai, C.H., Liu, D.R.: Integrating knowledge flow mining and collaborative filtering to support document recommendation. J. Syst. Softw. 82, 2023–2037 (2009)
Liu, H., Motoda, H.: A survey of content-based image retrieval with high-level semantics. Pattern Recogn. 40(1), 262–282 (2007)
MOVING Project web site. www.moving-project.eu. Accessed 31 Mar 2017
Moyano, F., Fernandez-Gago, C., Lopez, J.: A conceptual framework for trust models. In: Fischer-Hübner, S., Katsikas, S., Quirchmayr, G. (eds.) TrustBus 2012. LNCS, vol. 7449, pp. 93–104. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32287-7_8
Mangina, E., Kilbride, J.: Evaluation of keyphrase extraction algorithm and tiling process for a document/resource recommender within e-learning. Comput. Educ. 50, 807–820 (2008)
Manouselis, N., Costopoulou, C.: Analysis and classification of multi-criteria recommender systems. World Wide Web Internet Web Inf. Syst. 10(4), 415–441 (2007)
Moedritscher, F.: Towards a recommender strategy for personal learning environments. In: 4th ACM Conference on Recommender Systems (RecSys 2010)/5th European Conference on Technology Enhanced Learning (EC-TEL 2010), Proceedings of the 1st Workshop on Recommender Systems for Technology Enhanced Learning. Recsystel, Procedia Computer Science, Barcelona 2010, vol. 1(2), pp. 2775–2782 (2010)
Nishioka, C., Scherp, A.: Profiling vs. time vs. content: what does matter for top-k publication recommendation based on twitter Profiles? In: 16th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL 2016), Newark, NJ, USA, pp. 171–180, 19–23 June 2016. http://dx.doi.org/10.1145/2910896.2910898
Porcel, C., Lopez-Herrera, A.G., Herrera-Viedma, E.: A recommender system for research resources based on fuzzy linguistic modeling. Expert Syst. Appl. 36, 5173–5183 (2009)
Porcel, C., Moreno, J.M., Herrera-Viedma, E.: A multi-disciplinar recommender system to advice research resources in University Digital Libraries. Expert Syst. Appl. 36, 12520–12528 (2009)
Pu, P., Li, C., Hu, R.: Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Model. User Adap. Inter. 22(4–5), 317–355 (2012)
Rozewski, P., Kusztina, E., Tadeusiewicz, R., Zaikin, O.: Intelligent Open Learning Systems: Concepts, Models and Algorithms. Intelligent Systems Reference Library, vol. 22, p. 257. Springer, Berlin (2011)
Salehi, M.: Application of implicit and explicit attribute based collaborative filtering and BIDE for learning resource recommendation. Data Knowl. Eng. 87, 130–145 (2013). http://dx.doi.org/10.1016/j.datak.2013.07.001
Santos, O.C., Boticario, J.G., Pérez-Marin, D.: Extending web-based educational systems with personalised support through user centred designed recommendations along the e-learning life cycle. Sci. Comput. Program. 88, 92–109 (2014)
Santos, O.C., Boticario, J.G., Manjarrés-Riesco, A.: An approach for an affective educational recommendation model. In: Manouselis, N., Drachsler, H., Verbert, K., Santos, O.C. (eds.) Recommender Systems for Technology Enhanced Learning: Research Trends and Applications, pp. 123–143. Springer, New York (2014)
Santos, O.C., Saneiro, M., Boticario, J., Rodriguez-Sanchez, C.: Towards interactive context-aware affective educational recommendations in computer assisted language learning. New Rev. Hypermedia Multimedia 22(1–2), 27–57 (2015). doi:10.1080/13614568.2015.1058428
Shi, F., Marini, J.L., Audry, E.: Towards a psycho-cognitive recommender system. In: ERM4CT 2015: Proceedings of the International Workshop on Emotion Representations and Modelling for Companion Technologies, Seattle, pp. 25–31, 9–13 November 2015. http://dx.doi.org/10.1145/2829966.2829968
Sielis, G.A., Mettouris, C., Tzanavari, A., Papadopoulos, G.A.: Context-aware recommendations using topic maps technology for the enhancement of the creativity process. In: Santos, O.C., Boticario, J. (eds.) Educational Recommender Systems and Technologies: Practices and Challenges, pp. 43–66. IGI Global, Hershey (2012). doi:10.4018/978-1-61350-489-5.ch003
Skulimowski, A.M.J.: Optimal strategies for quantitative data retrieval in distributed database systems. In: Proceedings of the Second International Conference on Intelligent Systems Engineering, Hamburg, IEE Conference Publication No. 395, IEE, London, pp. 389–394, 5–9 September 1994. doi:10.1049/cp:19940655
Skulimowski, A.M.J.: Freedom of choice and creativity in multicriteria decision making. In: Theeramunkong, T., Kunifuji, S., Sornlertlamvanich, V., Nattee, C. (eds.) KICSS 2010. LNCS (LNAI), vol. 6746, pp. 190–203. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24788-0_18
Skulimowski, A.M.J.: Universal intelligence, creativity, and trust in emerging global expert systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 582–592. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38610-7_53
Skulimowski, A.M.J.: Anticipatory network models of multicriteria decision-making processes. Int. J. Syst. Sci. 45(1), 39–59 (2014). doi:10.1080/00207721.2012.670308
Skulimowski, A.M.J.: Impact of future intelligent information technologies on the methodology of scientific research. In: Proceedings 16th IEEE International Conference on Computer and Information Technology, Nadi, Fiji, IEEE CPS, pp. 238–247, 7–10 December 2016. doi:10.1109/CIT.2016.118
Skulimowski, A.M.J., Badecka, I., Czerni, M., Klamka, J., Kluz, D., Ligęza, A., Okoń-Horodyńska, E., Pukocz, P., Rotter, P., Szymlak, E., Tadeusiewicz, R., Wisła, R.: Trends and Scenarios of Selected Information Society Technologies. Advances in Decision Sciences and Futures Studies, vol. 1, p. 634. Progress & Business Publishers, Kraków (2016)
Skulimowski, A.M.J., Rotter, P., Tadeusiewicz, R.: Technological evolution models of neurocognitive and vision systems in medicine: prospects and scenarios for the development of brain-computer interfaces (BCI) until 2025 [in Polish]. In: Skulimowski, A.M.J. (ed.) Scenarios and Development Trends of Selected Information Society Technologies until 2025. Final Report. Progress & Business Publishers, Kraków, pp. 234–255 (2013). http://www.ict.foresight.pl
Tang, T.Y., Daniel, B.K., Romero, C.: Special issue on recommender systems for and in social and online learning environments. Expert Syst. 32(2), 261–263 (2015)
Tejeda-Lorente, A., Porcel, C., Bernabé-Moreno, J., Herrera-Viedma, E.: REFORE: a recommender system for researchers based on bibliometrics. Appl. Soft Comput. 30, 778–791 (2015)
Van Maanen, L., Van Rijn, H., van Grootel, M., Kemna, S., Klomp, M., Scholtens, E.: Personal publication assistant: abstract recommendations by a cognitive model. Cogn. Syst. Res. 11, 120–129 (2010)
Victor, P., Cornelis, C., De Cock, M.: Trust Networks for Recommender Systems. Springer, Heidelberg (2011)
Verbert, K., Manouselis, N., Xavier, O., Wolpers, M., Drachsler, H., Bosnic, I., Duval, E.: Context-aware recommender systems for learning: a survey and future challenges. IEEE Trans. Learn. Technol. 5(4), 318–335 (2012)
Vesin, B., Milicevic, A.K., Ivanovic, M., Budimac, Z.: Applying recommender systems and adaptive hypermedia for e-learning personalization. Comput. Inform. 32(3), 629–659 (2013)
Zaikin, O., Tadeusiewicz, R., Różewski, P., Busk Kofoed, L., Malinowska, M., Żyławski, A.: Teachers’ and students’ motivation model as a strategy for open distance learning processes. Bull. Pol. Acad. Sci. Tech. Sci. 64(4), 943–955 (2016). doi:10.1515/bpasts-2016-0103
Zapata, A., Menendez, V.H., Prieto, M.E., Romero, C.: A framework for recommendation in learning object repositories: an example of application in civil engineering. Adv. Eng. Softw. 56, 1–14 (2013)
Zhou, M., Xu, Y.: Challenges to use recommender systems to enhance meta-cognitive functioning in online learners. In: Santos, O., Boticario, J. (eds.) Educational Recommender Systems and Technologies: Practices and Challenges, pp. 282–301. IGI Global, Hershey (2012)
Acknowledgement
This paper has been supported by the EU Horizon 2020 research project MOVING (http://www.moving-project.eu) under Contract No. 693092. Selected preliminary results concerning recommendation systems trends have been obtained during the project SCETIST (www.ict.foresight.pl) financed by the ERDF and contributed to MOVING.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Skulimowski, A.M.J. (2017). Cognitive Content Recommendation in Digital Knowledge Repositories – A Survey of Recent Trends. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10246. Springer, Cham. https://doi.org/10.1007/978-3-319-59060-8_52
Download citation
DOI: https://doi.org/10.1007/978-3-319-59060-8_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59059-2
Online ISBN: 978-3-319-59060-8
eBook Packages: Computer ScienceComputer Science (R0)