[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cognitive Content Recommendation in Digital Knowledge Repositories – A Survey of Recent Trends

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10246))

Included in the following conference series:

  • 2307 Accesses

Abstract

This paper presents an overview of the cognitive aspects of content recommendation process in large heterogeneous knowledge repositories and their applications to design algorithms of incremental learning of users’ preferences, emotions, and satisfaction. This allows the recommendation procedures to align to the present and expected cognitive states of a user, increasing the combined recommendation and repository use efficiency. The learning algorithm takes into account the results of the cognitive and neural modelling of users’ decision behaviour. Inspirations from nature used in recommendation systems differ from the usual mimicking the biological neural processes. Specifically, a cognitive knowledge recommender may follow a strategy to discover emotional patterns in user behaviour and then adjust the recommendation procedure accordingly. The knowledge of cognitive decision mechanisms helps to optimize recommendation goals. Other cognitive recommendation procedures assist users in creating consistent learning or research groups. The primary application field of the above algorithms is a large knowledge repository coupled with an innovative training platform developed within an ongoing Horizon 2020 research project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adomavicius, G., Kwon, Y.O.: Multicriteria recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 847–880. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  2. Aher, S.B., Lobo, L.: Combination of machine learning algorithms for recommendation of courses in e-learning system based on historical data. Knowl. Based Syst. 51, 1–14 (2013)

    Article  Google Scholar 

  3. Bobadilla, J., Ortega, F., Hernando, A., Alcalá, J.: Improving collaborative filtering recommender system results and performance using genetic algorithms. Knowl. Based Syst. 24(8), 1310–1316 (2011). doi:10.1016/j.knosys.2011.06.005

    Article  Google Scholar 

  4. Bobadilla, J., Ortega, F., Hernando, A., Gutierrez, A.: Recommender systems survey. Knowl. Based Syst. 46, 109–132 (2013)

    Article  Google Scholar 

  5. Bobadilla, J., Serradilla, F., Hernando, A.: Collaborative filtering adapted to recommender systems of e-learning. Knowl. Based Syst. 22, 261–265 (2009)

    Article  Google Scholar 

  6. Cechinel, C., Camargo, S.D.S., Sánchez-Alonso, S., Sicilia, M.A.: Towards automated evaluation of learning resources inside repositories. In: Manouselis, N., Drachsler, H., Verbert, K., Santos, O.C. (eds.) Recommender Systems for Technology Enhanced Learning: Research Trends and Applications, pp. 25–46. Springer, New York (2014). doi:10.1007/978-1-4939-0530-0_2

    Chapter  Google Scholar 

  7. Chen, L.S., Hsu, F.H., Chen, M.C., Hsu, Y.C.: Developing recommender systems with the consideration of product profitability for sellers. Inf. Sci. 178, 1032–1048 (2008)

    Article  Google Scholar 

  8. Chen, W., Niu, Z., Zhao, X., Li, Y.: A hybrid recommendation algorithm adapted in e-learning environments. World Wide Web 17, 271–284 (2014)

    Article  Google Scholar 

  9. Cho, J., Kwon, K., Park, Y.: Q-rater: a collaborative reputation system based on source credibility theory. Expert Syst. Appl. 36, 3751–3760 (2009)

    Article  Google Scholar 

  10. Diaz, A., Motz, R., Rohrer, E., Tansini, L.: An ontology network for educational recommender systems. In: Santos, O., Boticario, J. (eds.) Educational Recommender Systems and Technologies: Practices and Challenges, pp. 67–93. IGI Global, Hershey (2012). doi:10.4018/978-1-61350-489-5.ch004

    Chapter  Google Scholar 

  11. Erdt, M., Fernández, A., Rensing, C.: Evaluating recommender systems for technology enhanced learning: a quantitative survey. IEEE Trans. Learn. Technol. 8(4), 326–344 (2015). doi:10.1109/TLT.2015.2438867

    Article  Google Scholar 

  12. Fernández, A., Anjorin, M., Dackiewicz, I., Rensing, C.: Recommendations from heterogeneous sources in a technology enhanced learning ecosystem. In: Manouselis, N., Drachsler, H., Verbert, K., Santos, O.C. (eds.) Recommender Systems for Technology Enhanced Learning: Research Trends and Applications, pp. 251–265. Springer, New York (2014). doi:10.1007/978-1-4939-0530-0_12

    Chapter  Google Scholar 

  13. Gligor, V., Wing, J.M.: Towards a theory of trust in networks of humans and computers. In: Christianson, B., Crispo, B., Malcolm, J., Stajano, F. (eds.) Security Protocols 2011. LNCS, vol. 7114, pp. 223–242. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25867-1_22

    Chapter  Google Scholar 

  14. Katarya, R., Verma, O.P.: Recent developments in affective recommender systems. Phys. A 461, 182–190 (2016)

    Article  Google Scholar 

  15. Khribi, M.K., Jemni, M., Nasraoui, O.: Automatic recommendations for e-learning personalization based on web usage mining techniques and information retrieval. Educ. Technol. Soc. 12(4), 30–42 (2009)

    Google Scholar 

  16. Manouselis, N., Drachsler, H., Verbert, K., Duval, E.: Recommender Systems for Learning, p. 90. Springer, Berlin (2012)

    Google Scholar 

  17. Lai, C.H., Liu, D.R.: Integrating knowledge flow mining and collaborative filtering to support document recommendation. J. Syst. Softw. 82, 2023–2037 (2009)

    Article  Google Scholar 

  18. Liu, H., Motoda, H.: A survey of content-based image retrieval with high-level semantics. Pattern Recogn. 40(1), 262–282 (2007)

    Article  Google Scholar 

  19. MOVING Project web site. www.moving-project.eu. Accessed 31 Mar 2017

  20. Moyano, F., Fernandez-Gago, C., Lopez, J.: A conceptual framework for trust models. In: Fischer-Hübner, S., Katsikas, S., Quirchmayr, G. (eds.) TrustBus 2012. LNCS, vol. 7449, pp. 93–104. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32287-7_8

    Chapter  Google Scholar 

  21. Mangina, E., Kilbride, J.: Evaluation of keyphrase extraction algorithm and tiling process for a document/resource recommender within e-learning. Comput. Educ. 50, 807–820 (2008)

    Article  Google Scholar 

  22. Manouselis, N., Costopoulou, C.: Analysis and classification of multi-criteria recommender systems. World Wide Web Internet Web Inf. Syst. 10(4), 415–441 (2007)

    Article  Google Scholar 

  23. Moedritscher, F.: Towards a recommender strategy for personal learning environments. In: 4th ACM Conference on Recommender Systems (RecSys 2010)/5th European Conference on Technology Enhanced Learning (EC-TEL 2010), Proceedings of the 1st Workshop on Recommender Systems for Technology Enhanced Learning. Recsystel, Procedia Computer Science, Barcelona 2010, vol. 1(2), pp. 2775–2782 (2010)

    Google Scholar 

  24. Nishioka, C., Scherp, A.: Profiling vs. time vs. content: what does matter for top-k publication recommendation based on twitter Profiles? In: 16th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL 2016), Newark, NJ, USA, pp. 171–180, 19–23 June 2016. http://dx.doi.org/10.1145/2910896.2910898

  25. Porcel, C., Lopez-Herrera, A.G., Herrera-Viedma, E.: A recommender system for research resources based on fuzzy linguistic modeling. Expert Syst. Appl. 36, 5173–5183 (2009)

    Article  Google Scholar 

  26. Porcel, C., Moreno, J.M., Herrera-Viedma, E.: A multi-disciplinar recommender system to advice research resources in University Digital Libraries. Expert Syst. Appl. 36, 12520–12528 (2009)

    Article  Google Scholar 

  27. Pu, P., Li, C., Hu, R.: Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Model. User Adap. Inter. 22(4–5), 317–355 (2012)

    Article  Google Scholar 

  28. Rozewski, P., Kusztina, E., Tadeusiewicz, R., Zaikin, O.: Intelligent Open Learning Systems: Concepts, Models and Algorithms. Intelligent Systems Reference Library, vol. 22, p. 257. Springer, Berlin (2011)

    Google Scholar 

  29. Salehi, M.: Application of implicit and explicit attribute based collaborative filtering and BIDE for learning resource recommendation. Data Knowl. Eng. 87, 130–145 (2013). http://dx.doi.org/10.1016/j.datak.2013.07.001

    Article  Google Scholar 

  30. Santos, O.C., Boticario, J.G., Pérez-Marin, D.: Extending web-based educational systems with personalised support through user centred designed recommendations along the e-learning life cycle. Sci. Comput. Program. 88, 92–109 (2014)

    Article  Google Scholar 

  31. Santos, O.C., Boticario, J.G., Manjarrés-Riesco, A.: An approach for an affective educational recommendation model. In: Manouselis, N., Drachsler, H., Verbert, K., Santos, O.C. (eds.) Recommender Systems for Technology Enhanced Learning: Research Trends and Applications, pp. 123–143. Springer, New York (2014)

    Chapter  Google Scholar 

  32. Santos, O.C., Saneiro, M., Boticario, J., Rodriguez-Sanchez, C.: Towards interactive context-aware affective educational recommendations in computer assisted language learning. New Rev. Hypermedia Multimedia 22(1–2), 27–57 (2015). doi:10.1080/13614568.2015.1058428

    Google Scholar 

  33. Shi, F., Marini, J.L., Audry, E.: Towards a psycho-cognitive recommender system. In: ERM4CT 2015: Proceedings of the International Workshop on Emotion Representations and Modelling for Companion Technologies, Seattle, pp. 25–31, 9–13 November 2015. http://dx.doi.org/10.1145/2829966.2829968

  34. Sielis, G.A., Mettouris, C., Tzanavari, A., Papadopoulos, G.A.: Context-aware recommendations using topic maps technology for the enhancement of the creativity process. In: Santos, O.C., Boticario, J. (eds.) Educational Recommender Systems and Technologies: Practices and Challenges, pp. 43–66. IGI Global, Hershey (2012). doi:10.4018/978-1-61350-489-5.ch003

    Chapter  Google Scholar 

  35. Skulimowski, A.M.J.: Optimal strategies for quantitative data retrieval in distributed database systems. In: Proceedings of the Second International Conference on Intelligent Systems Engineering, Hamburg, IEE Conference Publication No. 395, IEE, London, pp. 389–394, 5–9 September 1994. doi:10.1049/cp:19940655

  36. Skulimowski, A.M.J.: Freedom of choice and creativity in multicriteria decision making. In: Theeramunkong, T., Kunifuji, S., Sornlertlamvanich, V., Nattee, C. (eds.) KICSS 2010. LNCS (LNAI), vol. 6746, pp. 190–203. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24788-0_18

    Chapter  Google Scholar 

  37. Skulimowski, A.M.J.: Universal intelligence, creativity, and trust in emerging global expert systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 582–592. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38610-7_53

    Chapter  Google Scholar 

  38. Skulimowski, A.M.J.: Anticipatory network models of multicriteria decision-making processes. Int. J. Syst. Sci. 45(1), 39–59 (2014). doi:10.1080/00207721.2012.670308

    Article  MathSciNet  MATH  Google Scholar 

  39. Skulimowski, A.M.J.: Impact of future intelligent information technologies on the methodology of scientific research. In: Proceedings 16th IEEE International Conference on Computer and Information Technology, Nadi, Fiji, IEEE CPS, pp. 238–247, 7–10 December 2016. doi:10.1109/CIT.2016.118

  40. Skulimowski, A.M.J., Badecka, I., Czerni, M., Klamka, J., Kluz, D., Ligęza, A., Okoń-Horodyńska, E., Pukocz, P., Rotter, P., Szymlak, E., Tadeusiewicz, R., Wisła, R.: Trends and Scenarios of Selected Information Society Technologies. Advances in Decision Sciences and Futures Studies, vol. 1, p. 634. Progress & Business Publishers, Kraków (2016)

    Google Scholar 

  41. Skulimowski, A.M.J., Rotter, P., Tadeusiewicz, R.: Technological evolution models of neurocognitive and vision systems in medicine: prospects and scenarios for the development of brain-computer interfaces (BCI) until 2025 [in Polish]. In: Skulimowski, A.M.J. (ed.) Scenarios and Development Trends of Selected Information Society Technologies until 2025. Final Report. Progress & Business Publishers, Kraków, pp. 234–255 (2013). http://www.ict.foresight.pl

  42. Tang, T.Y., Daniel, B.K., Romero, C.: Special issue on recommender systems for and in social and online learning environments. Expert Syst. 32(2), 261–263 (2015)

    Article  Google Scholar 

  43. Tejeda-Lorente, A., Porcel, C., Bernabé-Moreno, J., Herrera-Viedma, E.: REFORE: a recommender system for researchers based on bibliometrics. Appl. Soft Comput. 30, 778–791 (2015)

    Article  Google Scholar 

  44. Van Maanen, L., Van Rijn, H., van Grootel, M., Kemna, S., Klomp, M., Scholtens, E.: Personal publication assistant: abstract recommendations by a cognitive model. Cogn. Syst. Res. 11, 120–129 (2010)

    Article  Google Scholar 

  45. Victor, P., Cornelis, C., De Cock, M.: Trust Networks for Recommender Systems. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  46. Verbert, K., Manouselis, N., Xavier, O., Wolpers, M., Drachsler, H., Bosnic, I., Duval, E.: Context-aware recommender systems for learning: a survey and future challenges. IEEE Trans. Learn. Technol. 5(4), 318–335 (2012)

    Article  Google Scholar 

  47. Vesin, B., Milicevic, A.K., Ivanovic, M., Budimac, Z.: Applying recommender systems and adaptive hypermedia for e-learning personalization. Comput. Inform. 32(3), 629–659 (2013)

    Google Scholar 

  48. Zaikin, O., Tadeusiewicz, R., Różewski, P., Busk Kofoed, L., Malinowska, M., Żyławski, A.: Teachers’ and students’ motivation model as a strategy for open distance learning processes. Bull. Pol. Acad. Sci. Tech. Sci. 64(4), 943–955 (2016). doi:10.1515/bpasts-2016-0103

    Google Scholar 

  49. Zapata, A., Menendez, V.H., Prieto, M.E., Romero, C.: A framework for recommendation in learning object repositories: an example of application in civil engineering. Adv. Eng. Softw. 56, 1–14 (2013)

    Article  Google Scholar 

  50. Zhou, M., Xu, Y.: Challenges to use recommender systems to enhance meta-cognitive functioning in online learners. In: Santos, O., Boticario, J. (eds.) Educational Recommender Systems and Technologies: Practices and Challenges, pp. 282–301. IGI Global, Hershey (2012)

    Chapter  Google Scholar 

Download references

Acknowledgement

This paper has been supported by the EU Horizon 2020 research project MOVING (http://www.moving-project.eu) under Contract No. 693092. Selected preliminary results concerning recommendation systems trends have been obtained during the project SCETIST (www.ict.foresight.pl) financed by the ERDF and contributed to MOVING.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej M. J. Skulimowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Skulimowski, A.M.J. (2017). Cognitive Content Recommendation in Digital Knowledge Repositories – A Survey of Recent Trends. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10246. Springer, Cham. https://doi.org/10.1007/978-3-319-59060-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59060-8_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59059-2

  • Online ISBN: 978-3-319-59060-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics