[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Semantic Data Integration for Industry 4.0 Standards

  • Conference paper
  • First Online:
Knowledge Engineering and Knowledge Management (EKAW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10180))

Included in the following conference series:

  • 1220 Accesses

Abstract

Industry 4.0 initiatives have fostered the definition of different standards, e.g., AutomationML or OPC UA, allowing for the specification of industrial objects and for machine-to-machine communication in Smart Factories. Albeit facilitating interoperability at different steps of the production life-cycle, the information models generated from these standards are not semantically defined, making the semantic data integration a challenging problem. We tackle the problems of integrating data from documents specified either using the same or different Industry 4.0 standards, and propose a rule-based framework that combines deductive databases and Semantic Web technologies to effectively solve these problems. As a proof-of-concept, we have developed a Datalog-based representation for AutomationML documents, and a set of rules for identifying semantic heterogeneity problems among these documents. We have empirically evaluated our proposed framework against several benchmarks and the initial results suggest that exploiting deductive and Semantic Web techniques allows for increasing scalability, efficiency, and coherence of models for Industry 4.0 manufacturing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://w3id.org/i40/aml/.

  2. 2.

    https://raw.githubusercontent.com/EIS-Bonn/krextor/master/src/xslt/extract/aml.xsl.

  3. 3.

    https://github.com/i40-Tools/AMLGoldStandardGenerator.

  4. 4.

    https://github.com/i40-Tools/HeterogeneityExampleData.

References

  1. Biffl, S., Kovalenko, O., Lüder, A., Schmidt, N., Rosendahl, R.: Semantic mapping support in AutomationML. In: ETFA, pp. 1–4. IEEE (2014)

    Google Scholar 

  2. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)

    Article  Google Scholar 

  3. eClass e.V.: eCl@ss standardized material and service classification (2016)

    Google Scholar 

  4. Enste, U., Mahnke, W.: OPC unified architecture. Automatisierungstechnik 59(7), 397–405 (2011)

    Article  Google Scholar 

  5. e.V. AutomationML, OPC Foundation: OPC UA information model for AutomationML. Status report (2016)

    Google Scholar 

  6. Grangel-González, I., Collarana, D., Halilaj, L., Lohmann, S., Lange, C., Vidal, M.-E., Auer, S.: Alligator: a deductive approach for the integration of Industry 4.0 standards. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 272–287. Springer, Cham (2016). doi:10.1007/978-3-319-49004-5_18

    Chapter  Google Scholar 

  7. Henßen, R., Schleipen, M.: Interoperability between OPC UA and AutomationML. In: Procedia CIRP 8th International Conference on Digital Enterprise Technology DET, vol. 25 (2014)

    Google Scholar 

  8. Himmler, F.: Function based engineering with automationml - towards better standardization and seamless process integration in plant engineering. In: 12th International Conference on Tagung Wirtschaftsinformatik, WI (2015)

    Google Scholar 

  9. Kovalenko, O., Euzenat, J.: Semantic matching of engineering data structures. In: Biffl, S., Sabou, M. (eds.) Semantic Web for Intelligent Engineering Applications. Springer, Cham (2016)

    Google Scholar 

  10. Kovalenko, O., Wimmer, M., Sabou, M., Lüder, A., Ekaputra, F.J., Biffl, S.: Modeling AutomationML: semantic web technologies vs. model-driven engineering. In: 20th IEEE Conference on Emerging Technologies & Factory Automation, ETFA, pp. 1–4 (2015)

    Google Scholar 

  11. Lange, C.: Krextor - an extensible XML\(\rightarrow \)RDF extraction framework. In: Scripting and Development for the Semantic Web, SFSW, vol. 449. CEUR Workshop Proceedings, Aachen, May 2009

    Google Scholar 

  12. Panetto, H., Zdravkovic, M., Jardim-Gonçalves, R., Romero, D., Cecil, J., Mezgár, I.: New perspectives for the future interoperable enterprise systems. Comput. Ind. 79, 47–63 (2016)

    Article  Google Scholar 

  13. Persson, J., Gallois, A., Björkelund, A., Hafdell, L., Haage, M., Malec, J., Nilsson, K., Nugues, P.: A knowledge integration framework for robotics. In: 41st International Symposium on Robotics and ROBOTIK 2010 (2010)

    Google Scholar 

  14. Sabou, M., Ekaputra, F., Kovalenko, O., Biffl, S.: Supporting the engineering of cyber-physical production systems with the AutomationML analyzer. In: 1st International Workshop on Cyber-Physical Production Systems, CPPS, pp. 1–8. IEEE (2016)

    Google Scholar 

  15. Schleipen, M., Damm, M., Henßen, R., Lüder, A., Schmidt, N., Sauer, O., Hoppe, S.: OPC UA and AutomationML-collaboration partners for one common goal: Industry 4.0. (2014)

    Google Scholar 

  16. Schleipen, M., Gutting, D., Sauerwein, F.: Domain dependant matching of MES knowledge and domain independent mapping of AutomationML models. In: 2012 IEEE 17th Conference on Emerging Technologies & Factory Automation, ETFA, pp. 1–7. IEEE (2012)

    Google Scholar 

  17. Schleipen, M., Okon, M.: The CAEX tool suite - user assistance for the use of standardized plant engineering data exchange. In: 15th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA (2010)

    Google Scholar 

  18. Schmidt, N., Lüder, A., Rosendahl, R., Ryashentseva, D., Foehr, M., Vollmar, J.: Surveying integration approaches for relevance in cyber physical production systems. In: ETFA, pp. 1–8. IEEE (2015)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank to Sören Auer and Maria-Esther Vidal for their guidance and fruitful discussions during the development of this doctoral work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irlán Grangel-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Grangel-González, I. (2017). Semantic Data Integration for Industry 4.0 Standards. In: Ciancarini, P., et al. Knowledge Engineering and Knowledge Management. EKAW 2016. Lecture Notes in Computer Science(), vol 10180. Springer, Cham. https://doi.org/10.1007/978-3-319-58694-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58694-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58693-9

  • Online ISBN: 978-3-319-58694-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics