Abstract
Smart cities involve, in a large scale, a wide array of interconnected components and agents, giving birth to large and heterogeneous data flows. They are inherently cross-disciplinary, provide interesting challenges, and constitute a very promising field for future urban developments, such as smart grids, eco-feedback, intelligent traffic control, and so on. We advocate that the key to these challenges is the proper modelling and exploitation of context. However, said context is highly dynamic and mainly unpredictable. Improved AI and machine learning techniques are required. Starting from some of the main smart cities features, this paper highlights the key challenges, explains why handling context is crucial to them, and gives some insights to address them, notably with multi-agent systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amato, F., Chianese, A., Moscato, V., Picariello, A., Sperli, G.: SNOPS: a smart environment for cultural heritage applications. In: Proceedings of the Twelfth International Workshop on Web Information and Data Management, pp. 49–56. ACM (2012)
Bai, X., McAllister, R.R.J., Beaty, R.M., Taylor, B.: Urban policy and governance in a global environment: complex systems, scale mismatches and public participation. Current Opin. Environ. Sustain. 2(3), 129–135 (2010)
Boes, J., Nigon, J., Verstaevel, N., Gleizes, M.-P., Migeon, F.: The self-adaptive context learning pattern: overview and proposal. In: Christiansen, H., Stojanovic, I., Papadopoulos, G.A. (eds.) Modeling and Using Context. LNCS (LNAI), vol. 9405, pp. 91–104. Springer, Cham (2015). doi:10.1007/978-3-319-25591-0_7
Briot, J.-P., de Nascimento, N.M., de Lucena, C.J.P.: A multi-agent architecture for quantified fruits: design and experience. In: 28th International Conference on Software Engineering & Knowledge Engineering (SEKE 2016). SEKE/Knowledge Systems Institute, PA, USA (2016)
Cerquides, J., Picard, G., Rodríguez-Aguilar, J.A.: Designing a marketplace for the trading and distribution of energy in the smart grid. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, pp. 1285–1293 (2015)
Chamoso, P., De la Prieta, F., Pérez, J.B., Rodríguez, J.M.C.: Conflict resolution with agents in smart cities. In: Interdisciplinary Perspectives on Contemporary Conflict Resolution, p. 244 (2016)
Choy, M.C., Srinivasan, D., Cheu, R.L.: Neural networks for continuous online learning and control. IEEE Trans. Neural Netw. 17(6), 1511–1531 (2006)
Ferber, J.: Multi-agent Systems: An Introduction to Distributed Artificial Intelligence, vol. 1. Addison-Wesley, Reading (1999)
Froehlich, J., Findlater, L., Landay, J.: The design of eco-feedback technology. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1999–2008. ACM (2010)
Guériau, M., Billot, R., El Faouzi, N.-E., Monteil, J., Armetta, F., Hassas, S.: How to assess the benefits of connected vehicles? A simulation framework for the design of cooperative traffic management strategies. Transp. Res. Part C: Emerg. Technol. 67, 266–279 (2016)
Hancke, G.P., Hancke Jr., G.P., et al.: The role of advanced sensing in smart cities. Sensors 13(1), 393–425 (2012)
Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., Williams, P.: Foundations for smarter cities. IBM J. Res. Dev. 54(4), 1–16 (2010)
Jin, J., Gubbi, J., Marusic, S., Palaniswami, M.: An information framework for creating a smart city through Internet of Things. IEEE Internet Things J. 1(2), 112–121 (2014)
Kitchin, R.: The real-time city? Big data and smart urbanism. GeoJournal 79(1), 1–14 (2014)
Lewis, D.P., Jebara, T., Noble, W.S.: Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure. Bioinformatics 22(22), 2753–2760 (2006)
Lützenberger, M., Küster, T., Masuch, N., Fähndrich, J.: Multi-agent system in practice: when research meets reality. In: Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, pp. 796–805 (2016)
Martínez-Ballesté, A., Pérez-Martínez, P.A., Solanas, A.: The pursuit of citizens’ privacy: a privacy-aware smart city is possible. IEEE Commun. Mag. 51(6), 136–141 (2013)
Mazac, S., Armetta, F., Hassas, S.: On bootstrapping sensori-motor patterns for a constructivist learning system in continuous environments. In: Alife 14: Fourteenth International Conference on the Synthesis and Simulation of Living Systems (2014)
Morvaj, B., Lugaric, L., Krajcar, S.: Demonstrating smart buildings and smart grid features in a smart energy city. In: Proceedings of the 2011 3rd International Youth Conference on Energetics (IYCE), pp. 1–8. IEEE (2011)
Mustapha, K., Mcheick, H., Mellouli, S.: Smart cities and resilience plans: a multi-agent based simulation for extreme event rescuing. In: Gil-Garcia, J.R., Pardo, T.A., Nam, T. (eds.) Smarter as the New Urban Agenda: A Comprehensive View of the 21st Century City. PAIT, vol. 11, pp. 149–170. Springer, Cham (2016). doi:10.1007/978-3-319-17620-8_8
Najjar, A., Reignier, P.: Constructivist ambient intelligent agent for smart environments. In: 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 356–359. IEEE (2013)
Nam, T., Pardo, A.T.: Conceptualizing smart city with dimensions of technology, people, and institutions. In: Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, pp. 282–291. ACM (2011)
Neirotti, P., De Marco, A., Cagliano, A.C., Mangano, G., Scorrano, F.: Current trends in smart city initiatives: some stylised facts. Cities 38, 25–36 (2014)
Nigon J., Glize, E., Dupas, D., Crasnier, F., Boes, J.: Use cases of pervasive artificial intelligence for smart cities challenges. In: IEEE Workshop on Smart and Sustainable City, Toulouse, juillet (2016)
Opper, M.: Online versus offline learning. Philos. Mag. B 77(5), 1531–1537 (1998)
Pittarello, F., Pellegrini, T.: Designing and evaluating interfaces for domestic eco-feedback: a blended educational experience. In: Proceedings of the 11th Biannual Conference on Italian SIGCHI Chapter, pp. 18–25. ACM (2015)
Roscia, M., Longo, M., Lazaroiu, G.C.: Smart city by multi-agent systems. In: 2013 International Conference on Renewable Energy Research and Applications (ICRERA), pp. 371–376. IEEE (2013)
Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M., Oliveira, A.: Smart cities and the future internet: towards cooperation frameworks for open innovation. In: Domingue, J., et al. (eds.) FIA 2011. LNCS, vol. 6656, pp. 431–446. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20898-0_31
Singh, M., Duggirala, M., Hayatnagarkar, H., Balaraman, V.: A multi-agent model of workgroup behaviour in an enterprise using a compositional approach (2016)
Su, K., Li, J., Fu, H.: Smart city and the applications. In: 2011 International Conference on Electronics, Communications and Control (ICECC), pp. 1028–1031. IEEE (2011)
Szabó, R., Farkas, K., Ispány, M., Benczúr, A.A., Bátfai, N., Jeszenszky, P., Laki, S., Vágner, A., Kollár, L., Sidló, C., et al.: Framework for smart city applications based on participatory sensing. In: 2013 IEEE 4th International Conference on Cognitive Infocommunications (CogInfoCom), pp. 295–300. IEEE (2013)
Vaubourg, J., Presse, Y., Camus, B., Bourjot, C., Ciarletta, L., Chevrier, V., Tavella, J.-P., Morais, H.: Multi-agent multi-model simulation of smart grids in the MS4SG project. In: Demazeau, Y., Decker, K.S., Bajo Pérez, J., de la Prieta, F. (eds.) PAAMS 2015. LNCS (LNAI), vol. 9086, pp. 240–251. Springer, Cham (2015). doi:10.1007/978-3-319-18944-4_20
Nicolas, V.: Self-organization of robotic devices through demonstrations. Thesis, Université de Toulouse, Toulouse, France, juin (2016)
Vlahogianni, E.I., Kepaptsoglou, K., Tsetsos, V., Karlaftis, M.G.: A real-time parking prediction system for smart cities. J. Intell. Transp. Syst. 20(2), 192–204 (2016)
Acknowledgements
This work is partially funded by the Midi-Pyrénées region for the neOCampus initiative (www.irit.fr/neocampus/) and supported by the University of Toulouse.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Nigon, J., Verstaevel, N., Boes, J., Migeon, F., Gleizes, MP. (2017). Smart Is a Matter of Context. In: Brézillon, P., Turner, R., Penco, C. (eds) Modeling and Using Context. CONTEXT 2017. Lecture Notes in Computer Science(), vol 10257. Springer, Cham. https://doi.org/10.1007/978-3-319-57837-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-57837-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57836-1
Online ISBN: 978-3-319-57837-8
eBook Packages: Computer ScienceComputer Science (R0)