Abstract
Social media services deploy tag recommendation systems to facilitate the process of tagging objects which depends on the information of both the user’s preferences and the tagged object. However, most image tag recommender systems do not consider the additional information provided by the uploaded image but rely only on textual information, or make use of simple low-level image features. In this paper, we propose a personalized deep learning approach for the image tag recommendation that considers the user’s preferences, as well as visual information. We employ Convolutional Neural Networks (CNNs), which already provide excellent performance for image classification and recognition, to obtain visual features from images in a supervised way. We provide empirical evidence that features selected in this fashion improve the capability of tag recommender systems, compared to the current state of the art that is using hand-crafted visual features, or is solely based on the tagging history information. The proposed method yields up to at least two percent accuracy improvement in two real world datasets, namely NUS-WIDE and Flickr-PTR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 971–980 (2007)
Chen, X., Shin, H.: Tag recommendation by machine learning with textual and social features. J. Intell. Inf. Syst. 40, 261–282 (2013)
Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from National University of Singapore. In: Proceedings of the ACM International Conference on Image and Video Retrieval, p. 48 (2009)
Garg, N., Weber, I.: Personalized, interactive tag recommendation for flickr. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 67–74 (2008)
Gong, Y., Jia, Y., Leung, T., Toshev, A., Ioffe, S.: Deep convolutional ranking for multilabel image annotation (2013). arXiv preprint: arXiv:1312.4894
Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in folksonomies. In: Kok, J.N., Koronacki, J., de Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74976-9_52
Kowald, D., Lacic, E., Trattner, C.: TagRec: towards a standardized tag recommender benchmarking framework. In: Proceedings of the 25th ACM Conference on Hypertext and Social Media, pp. 305–307 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)
Li, X., Snoek, C.G., Worring, M.: Learning tag relevance by neighbor voting for social image retrieval. In: Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval, pp. 180–187 (2008)
Marinho, L.B., Hotho, A., Jäschke, R., Nanopoulos, A., Rendle, S., Schmidt-Thieme, L., Stumme, G., Symeonidis, P.: Recommender Systems for Social Tagging Systems. Springer Science & Business Media, New York (2012)
McParlane, P.J., Moshfeghi, Y., Jose, J.M.: Collections for automatic image annotation and photo tag recommendation. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014. LNCS, vol. 8325, pp. 133–145. Springer, Cham (2014). doi:10.1007/978-3-319-04114-8_12
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38, 39–41 (1995)
Qian, X., Liu, X., Zheng, C., Du, Y., Hou, X.: Tagging photos using users’ vocabularies. Neurocomputing 111, 144–153 (2013)
Rae, A., Sigurbjörnsson, B., van Zwol, R.: Improving tag recommendation using social networks. In: Adaptivity, Personalization and Fusion of Heterogeneous Information, pp. 92–99 (2010)
Rendle, S.: Factorization machines. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 995–1000 (2010)
Rendle, S., Balby Marinho, L., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal ranking with tensor factorization for tag recommendation. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 727–736 (2009)
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461 (2009)
Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 81–90 (2010)
Sigurbjörnsson, B., Van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proceedings of the 17th International Conference on World Wide Web, pp. 327–336 (2008)
Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, New York (2009)
Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using DropConnect. In: Proceedings of the 30th International Conference on Machine Learning (ICML-2013), pp. 1058–1066 (2013)
Wei, Y., Xia, W., Huang, J., Ni, B., Dong, J., Zhao, Y., Yan, S.: CNN: single-label to multi-label (2014). arXiv preprint: arXiv:1406.5726
Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Nguyen, H.T.H., Wistuba, M., Grabocka, J., Drumond, L.R., Schmidt-Thieme, L. (2017). Personalized Deep Learning for Tag Recommendation. In: Kim, J., Shim, K., Cao, L., Lee, JG., Lin, X., Moon, YS. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2017. Lecture Notes in Computer Science(), vol 10234. Springer, Cham. https://doi.org/10.1007/978-3-319-57454-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-57454-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57453-0
Online ISBN: 978-3-319-57454-7
eBook Packages: Computer ScienceComputer Science (R0)