[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Personalized Deep Learning for Tag Recommendation

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10234))

Included in the following conference series:

Abstract

Social media services deploy tag recommendation systems to facilitate the process of tagging objects which depends on the information of both the user’s preferences and the tagged object. However, most image tag recommender systems do not consider the additional information provided by the uploaded image but rely only on textual information, or make use of simple low-level image features. In this paper, we propose a personalized deep learning approach for the image tag recommendation that considers the user’s preferences, as well as visual information. We employ Convolutional Neural Networks (CNNs), which already provide excellent performance for image classification and recognition, to obtain visual features from images in a supervised way. We provide empirical evidence that features selected in this fashion improve the capability of tag recommender systems, compared to the current state of the art that is using hand-crafted visual features, or is solely based on the tagging history information. The proposed method yields up to at least two percent accuracy improvement in two real world datasets, namely NUS-WIDE and Flickr-PTR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.flickr.com/services/api/.

References

  1. Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 971–980 (2007)

    Google Scholar 

  2. Chen, X., Shin, H.: Tag recommendation by machine learning with textual and social features. J. Intell. Inf. Syst. 40, 261–282 (2013)

    Article  Google Scholar 

  3. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from National University of Singapore. In: Proceedings of the ACM International Conference on Image and Video Retrieval, p. 48 (2009)

    Google Scholar 

  4. Garg, N., Weber, I.: Personalized, interactive tag recommendation for flickr. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 67–74 (2008)

    Google Scholar 

  5. Gong, Y., Jia, Y., Leung, T., Toshev, A., Ioffe, S.: Deep convolutional ranking for multilabel image annotation (2013). arXiv preprint: arXiv:1312.4894

  6. Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in folksonomies. In: Kok, J.N., Koronacki, J., de Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74976-9_52

    Chapter  Google Scholar 

  7. Kowald, D., Lacic, E., Trattner, C.: TagRec: towards a standardized tag recommender benchmarking framework. In: Proceedings of the 25th ACM Conference on Hypertext and Social Media, pp. 305–307 (2014)

    Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  10. Li, X., Snoek, C.G., Worring, M.: Learning tag relevance by neighbor voting for social image retrieval. In: Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval, pp. 180–187 (2008)

    Google Scholar 

  11. Marinho, L.B., Hotho, A., Jäschke, R., Nanopoulos, A., Rendle, S., Schmidt-Thieme, L., Stumme, G., Symeonidis, P.: Recommender Systems for Social Tagging Systems. Springer Science & Business Media, New York (2012)

    Book  Google Scholar 

  12. McParlane, P.J., Moshfeghi, Y., Jose, J.M.: Collections for automatic image annotation and photo tag recommendation. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014. LNCS, vol. 8325, pp. 133–145. Springer, Cham (2014). doi:10.1007/978-3-319-04114-8_12

    Chapter  Google Scholar 

  13. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38, 39–41 (1995)

    Article  Google Scholar 

  14. Qian, X., Liu, X., Zheng, C., Du, Y., Hou, X.: Tagging photos using users’ vocabularies. Neurocomputing 111, 144–153 (2013)

    Article  Google Scholar 

  15. Rae, A., Sigurbjörnsson, B., van Zwol, R.: Improving tag recommendation using social networks. In: Adaptivity, Personalization and Fusion of Heterogeneous Information, pp. 92–99 (2010)

    Google Scholar 

  16. Rendle, S.: Factorization machines. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 995–1000 (2010)

    Google Scholar 

  17. Rendle, S., Balby Marinho, L., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal ranking with tensor factorization for tag recommendation. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 727–736 (2009)

    Google Scholar 

  18. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461 (2009)

    Google Scholar 

  19. Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 81–90 (2010)

    Google Scholar 

  20. Sigurbjörnsson, B., Van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proceedings of the 17th International Conference on World Wide Web, pp. 327–336 (2008)

    Google Scholar 

  21. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, New York (2009)

    Chapter  Google Scholar 

  22. Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using DropConnect. In: Proceedings of the 30th International Conference on Machine Learning (ICML-2013), pp. 1058–1066 (2013)

    Google Scholar 

  23. Wei, Y., Xia, W., Huang, J., Ni, B., Dong, J., Zhao, Y., Yan, S.: CNN: single-label to multi-label (2014). arXiv preprint: arXiv:1406.5726

  24. Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanh T. H. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nguyen, H.T.H., Wistuba, M., Grabocka, J., Drumond, L.R., Schmidt-Thieme, L. (2017). Personalized Deep Learning for Tag Recommendation. In: Kim, J., Shim, K., Cao, L., Lee, JG., Lin, X., Moon, YS. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2017. Lecture Notes in Computer Science(), vol 10234. Springer, Cham. https://doi.org/10.1007/978-3-319-57454-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57454-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57453-0

  • Online ISBN: 978-3-319-57454-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics