Abstract
This paper describes the application of a Differential Evolution based approach for inducing oblique decision trees in a global search strategy. By using both the number of attributes and the number of class labels in a dataset, this approach determines the size of the real-valued vector utilized for encoding the set of hyperplanes used as test conditions in the internal nodes of an oblique decision tree. Also a scheme of three steps to map the linear representation of candidate solutions into feasible oblique decision trees is described. Experimental results obtained show that this approach induces more accurate classifiers than those produced by other proposed induction methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Highest values for each dataset are in bold.
References
Agapitos, A., O’Neill, M., Brabazon, A., Theodoridis, T.: Maximum margin decision surfaces for increased generalisation in evolutionary decision tree learning. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 61–72. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20407-4_6
Barros, R.C., Basgalupp, M.P., Carvalho, A., Freitas, A.A.: A survey of evolutionary algorithms for decision-tree induction. IEEE Trans. Syst. Man Cybern.-Part C: Appl. Rev. 42(3), 291–312 (2012). doi:10.1109/TSMCC.2011.2157494
Basgalupp, M.P., Barros, R.C., de Carvalho, A.C., Freitas, A.A.: Evolving decision trees with beam search-based initialization and lexicographic multi-objective evaluation. Inf. Sci. 258, 160–181 (2014). doi:10.1016/j.ins.2013.07.025
Bot, M.C.J., Langdon, W.B.: Improving induction of linear classification trees with genetic programming. In: Whitley, L.D., Goldberg, D.E., Cantú-Paz, E., Spector, L., Parmee, I.C., Beyer, H.G. (eds.) GECCO-2000, pp. 403–410. Morgan Kaufmann, Burlington (2000)
Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Taylor & Francis, Abingdon (1984)
Cantú-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary algorithms. IEEE Trans. Evol. Comput. 7(1), 54–68 (2003). doi:10.1109/TEVC.2002.806857
Das, S., Abraham, A., Konar, A.: Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 38(1), 218–237 (2008). doi:10.1109/tsmca.2007.909595
De Falco, I.: Differential evolution for automatic rule extraction from medical databases. Appl. Soft Comput. 13(2), 1265–1283 (2013). doi:10.1016/j.asoc.2012.10.022
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(Dec), 1–30 (2006)
Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multiobjective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011). doi:10.1016/j.advengsoft.2011.05.014
Espejo, P.G., Ventura, S., Herrera, F.: A survey on the application of genetic programming to classification. IEEE Trans. Syst. Man Cybern.-Part C: Appl. Rev. 40(2), 121–144 (2010). doi:10.1109/TSMCC.2009.2033566
García, S., Derrac, J., Triguero, I., Carmona, C.J., Herrera, F.: Evolutionary-based selection of generalized instances for imbalanced classification. Knowl.-Based Syst. 25(1), 3–12 (2012). doi:10.1016/j.knosys.2011.01.012
Geetha, K., Baboo, S.S.: An empirical model for thyroid disease classification using evolutionary multivariate Bayesian prediction method. Glob. J. Comput. Sci. Technol. 16(1), 1–9 (2016)
Hawkins, D.M.: The problem of overfitting. ChemInform 35(19) (2004). doi:10.1002/chin.200419274
Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15(3), 651–674 (2006). doi:10.1198/106186006x133933
Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP-complete. Inf. Process. Lett. 5(1), 15–17 (1976). doi:10.1016/0020-0190(76)90095-8
Kennedy, H.C., Chinniah, C., Bradbeer, P., Morss, L.: The contruction and evaluation of decision trees: a comparison of evolutionary and concept learning methods. In: Corne, D., Shapiro, J.L. (eds.) AISB EC 1997. LNCS, vol. 1305, pp. 147–161. Springer, Heidelberg (1997). doi:10.1007/BFb0027172
Krętowski, M., Grześ, M.: Evolutionary learning of linear trees with embedded feature selection. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 400–409. Springer, Heidelberg (2006). doi:10.1007/11785231_43
Leema, N., Nehemiah, H.K., Kannan, A.: Neural network classifier optimization using differential evolution with global information and back propagation algorithm for clinical datasets. Appl. Soft Comput. 49, 834–844 (2016). doi:10.1016/j.asoc.2016.08.001
Li, J., Ding, L., Li, B.: Differential evolution-based parameters optimisation and feature selection for support vector machine. Int. J. Comput. Sci. Eng. 13(4), 355–363 (2016)
Lichman, M.: UCI Machine Learning Repository (2013). University of California, Irvine. http://archive.ics.uci.edu/ml
Liu, K.H., Xu, C.G.: A genetic programming-based approach to the classification of multiclass microarray datasets. Bioinformatics 25(3), 331–337 (2009). doi:10.1093/bioinformatics/btn644
Lopes, R.A., Freitas, A.R.R., Silva, R.C.P., Guimarães, F.G.: Differential evolution and perceptron decision trees for classification tasks. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 550–557. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32639-4_67
Murthy, S.K., Kasif, S., Salzberg, S., Beigel, R.: OC1: a randomized algorithm for building oblique decision trees. In: Proceedings of AAAI 1993, vol. 93, pp. 322–327 (1993)
Plagianakos, V.P., Tasoulis, D.K., Vrahatis, M.N.: A review of major application areas of differential evolution. In: Chakraborty, U.K. (ed.) Advances in Differential Evolution. SCI, vol. 143, pp. 197–238. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68830-38
Quinlan, J.R.: Simplifying decision trees. Int. J. Hum.-Comput. Stud. 27(3), 221–234 (1987). doi:10.1006/ijhc.1987.0321
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, Burlington (1993)
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997). doi:10.1023/A:1008202821328
Strobl, C., Malley, J., Tutz, G.: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol. Methods 14(4), 323–348 (2009). doi:10.1037/a0016973
Tušar, T.: Optimizing accuracy and size of decision trees. In: ERK-2007, pp. 81–84 (2007)
Veenhuis, C.B.: Tree based differential evolution. In: Vanneschi, L., Gustafson, S., Moraglio, A., Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 208–219. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01181-8_18
Vukobratović, B., Struharik, R.: Evolving full oblique decision trees. In: CINTI 2015, pp. 95–100. IEEE (2015). doi:10.1109/CINTI.2015.7382901
Wang, P., Tang, K., Weise, T., Tsang, E.P.K., Yao, X.: Multiobjective genetic programming for maximizing ROC performance. Neurocomputing 125, 102–118 (2014). doi:10.1016/j.neucom.2012.06.054
Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2005)
Acknowledgments
This work has been supported by the Mexican Government (CONACyT FOMIX-DICC project No. TAB-2014-C01-245876 and the PROMEP-SEP project No. DSA/103.5/15/6409).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Rivera-Lopez, R., Canul-Reich, J. (2017). A Global Search Approach for Inducing Oblique Decision Trees Using Differential Evolution. In: Mouhoub, M., Langlais, P. (eds) Advances in Artificial Intelligence. Canadian AI 2017. Lecture Notes in Computer Science(), vol 10233. Springer, Cham. https://doi.org/10.1007/978-3-319-57351-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-57351-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57350-2
Online ISBN: 978-3-319-57351-9
eBook Packages: Computer ScienceComputer Science (R0)