Abstract
Metamaterials are artificial materials having uncommon physical properties. For a fast and careful design of these structures, the development of simple and faithful models able to reproduce their electromagnetic behavior is a key factor. Very recently a quick method for the extraction of Drude-Lorentz models for electromagnetic metamaterials has been presented [1]. In this work we improve that approach, introducing a novel procedure exploiting a micro-genetic algorithm (\(\mu \)GA). Numerical results obtained for the case of a split ring resonator structure cleary show a better reconstruction behaviour for equivalent magnetic permittivity \(\mu _{eff}\) than those provided by [1].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cui, T.J., Smith, D.R., Liu, R.: Metamaterials. Theory, Design, and Applications. Springer Science & Business Media (2009)
Shivola, A.: Metamaterials in electromagnetics. Metamaterials 1(1), 2–11 (2007)
Capolino, F. (ed.): Theory and Phenomena of Metamaterials. CRC Press (2009)
Smith, D.R., Vier, D.C., Koschny, T., Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamateials. Phys. Rev. E 3(71), 1–11 (2005)
Zhang, X., Wu, Y.: Effective medium theory for anisotropic metamaterials. Sci. Rep. (5) (2015)
Bilotti, F., Toscano, A., Vegni, L., Aydin, K., Alici, K.B., Ozbay, E.: Equivalent circuit models for the design od metamaterial based on artificial magnetic inclusions. IEEE Trans. Microw. Theory Techn. 12(55), 1865–2873 (2007)
Mori, T., Murakami, R., Sato, Y., Campelo, F., Igarashi, H.: Shape optimization of wideband antennas for microwave energy harvesters using FDTD. IEEE Trans. Mag. 3(51), 1–4 (2014)
Alamaniotis, M., Bargiotas, D., Bourbakis, D., Tsoukalas, L.H.: Genetic optimal regression of relevance vector machines for electricity pricing signal forecasting in smart grids. IEEE Trans. Smart Grids 6(6), 2997–3005 (2015)
Goldberg, D.E.: Genetic Algorithms. Pearson Education (2006)
Koeppen, M., Schaefer, G., Abraham, A.: Intelligent Computation Optimization in Engineering: Techniques & Applications. Springer Science & Bussiness Media (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Sgrò, A., De Carlo, D., Angiulli, G., Morabito, F.C., Versaci, M. (2018). Accurate Computation of Drude-Lorentz Model Coefficients of Single Negative Magnetic Metamaterials Using a Micro-Genetic Algorithm Approach. In: Esposito, A., Faudez-Zanuy, M., Morabito, F., Pasero, E. (eds) Multidisciplinary Approaches to Neural Computing. Smart Innovation, Systems and Technologies, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-56904-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-56904-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-56903-1
Online ISBN: 978-3-319-56904-8
eBook Packages: EngineeringEngineering (R0)