[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Visualization of Spatio-Temporal Events in Geo-Tagged Social Media

  • Conference paper
  • First Online:
Web and Wireless Geographical Information Systems (W2GIS 2017)

Abstract

This paper presents a spatio-temporal mapping system for visualizing a summary of geo-tagged social media as tags in a cloud, and it is associated with a web page by detecting spatio-temporal events. Through it, users can grasp events at anytime from anywhere while they browse any web pages. In order to detect spatio-temporal events from social media such as tweets, the system extracts expected events (e.g., crowded restaurants) by using machine learning algorithms to classify tweets through space and time, and it also extracts unexpected or seasonal events (e.g., time sales) by comparing the current situation to those normal regularities. Thus, the system presents a social tag cloud of tweets to help users gain a quick overview of spatio-temporal events while they browse a web page, and it also presents a tweet list to help users obtain more details about events. Furthermore, users can freely specify a time period or a tag to view its related tweets. Finally, we discuss our proposed social tag cloud generation method’s effectiveness using dense geo-tagged tweets at multi-functional buildings in urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://dev.twitter.com/streaming/overview.

  2. 2.

    https://html.spec.whatwg.org/multipage/comms.html#network.

  3. 3.

    https://developers.google.com/place.

  4. 4.

    http://developer.yahoo.co.jp/.

  5. 5.

    http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN.

  6. 6.

    \(\text {Precision}=\frac{\#\text {correct answers}}{\text {total } \#\text {feature words of each category}}\).

  7. 7.

    \(\mathrm {Evaluation Ratio}=\frac{\#\text {answers of ``related to its category''}}{\#\text {answers of ``not related to its category''}}\).

References

  1. Alvanaki, F., Sebastian, M., Ramamritham, K., Weikum, G.: Enblogue: emergent topic detection in web 2.0 streams. In: SIGMOD 2011, pp. 1271–1273 (2011). doi:10.1145/1989323.1989473

  2. Antoine, E., Jatowt, A., Wakamiya, S., Kawai, Y., Akiyama, T.: Portraying collective spatial attention in twitter. In: KDD 2015, pp. 39–48 (2015). doi:10.1145/2783258.2783418

  3. Carter, S., Tsagkias, M., Weerkamp, W.: Twitter hashtags: joint translation and clustering. In: Web Science 2011, pp. 1–3 (2011)

    Google Scholar 

  4. Cheng, T., Wicks, T.: Event detection using twitter: a spatio-temporal approach. PloS One 9(6), e97,807 (2014). doi:10.1371/journal.pone.0097807

  5. Cui, A., Zhang, M., Liu, Y., Ma, S., Zhang, K.: Discover breaking events with popular hashtags in twitter. In: CIKM 2012, pp. 1794–1798 (2012). doi:10.1145/2396761.2398519

  6. Demostration Video Page of Prototype System. http://www.wie.csse.yamaguchi-u.ac.jp/share/Demo2016.mp4

  7. Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: a survey. Interact. Comput. 25(1), 21–33 (2013). doi:10.1093/iwc/iws010

    Google Scholar 

  8. Fruin, B.C., Samet, H., Sankaranarayanan, J.: Tweetphoto: photos from news tweets. In: SIGSPATIAL 2012, pp. 582–585 (2012)

    Google Scholar 

  9. Ifrim, G., Shi, B., Brigadir, I.: Event detection in twitter using aggressive filtering and hierarchical tweet clustering. In: SNOW-DC@WWW 2014, pp. 33–40 (2016)

    Google Scholar 

  10. Khurdiya, A., Dey, L., Mahajan, D., Verma, I.: Extraction and compilation of events and sub-events from twitter. In: WI-IAT 2012, pp. 504–508 (2012). doi:10.1109/WI-IAT.2012.192

  11. Lansley, G., Longley, P.A.: The geography of twitter topics in london. Comput. Environ. Urban Syst. 58, 85–96 (2016). doi:10.1016/j.compenvurbsys.2016.04.002

    Article  Google Scholar 

  12. Lee, C.H.: Mining spatio-temporal information on microblogging streams using a density-based online clustering method. Expert Syst. Appl. 39(10), 9623–9641 (2012). doi:10.1016/j.eswa.2012.02.136

    Article  Google Scholar 

  13. Li, C., Sun, A., Datta, A.: Twevent: Segment-based event detection from tweets. In: CIKM 2012, pp. 155–164 (2012). doi:10.1145/2396761.2396785

  14. Magdy, A., Alarabi, L., Al-Harthi, S., Musleh, M., Ghanem, T.M., Ghani, S., Mokbel, M.F.: Taghreed: A system for querying, analyzing, and visualizing geotagged microblogs. In: SIGSPATIAL 2014, pp. 163–172 (2014). doi:10.1145/2666310.2666397

  15. Musleh, M.: Spatio-temporal visual analysis for event-specific tweets. In: SIGMOD 2014, pp. 1611–1612 (2014). doi:10.1145/2588555.2612666

  16. O’Connor, B., Krieger, M., Ahn, D.: Tweetmotif: exploratory search and topic summarization for twitter. In: ICWSM 2010, pp. 384–385 (2010)

    Google Scholar 

  17. Ookawara, K., Hirano, H., Masuko, S., Hoshino, J.: Store visualization system for shopping mall type e-commerce [in Japanese]. J. Inf. Process. (JIP) 56(3), 847–855 (2015)

    Google Scholar 

  18. Pat, B., Kanza, Y., Naaman, M.: Geosocial search: Finding places based on geotagged social-media posts. In: WWW Companion, pp. 231–234 (2015). doi:10.1145/2740908.2742847

  19. Petrović, S., Osborne, M., Lavrenko, V.: Streaming first story detection with application to twitter. In: HLT 2010, pp. 181–189 (2010)

    Google Scholar 

  20. Poomagal, S., Visalakshi, P., Hamsapriya, T.: A novel method for clustering tweets in twitter. Int. J. Web Based Communities 11(2), 170–187 (2015). doi:10.1504/IJWBC.2015.068540

    Article  Google Scholar 

  21. Ritter, A., Etzioni, O., Clark, S., et al.: Open domain event extraction from twitter. In: SIGKDD 2012, pp. 1104–1112 (2012). doi:10.1145/2339530.2339704

  22. Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans. Knowl. Data Eng. 25(4), 919–931 (2013). doi:10.1109/TKDE.2012.29

    Article  Google Scholar 

  23. Wang, Y., Yasui, G., Hosokawa, Y., Kawai, Y., Akiyama, T., Sumiya, K.: Location-based microblog viewing system synchronized with web pages. In: FTSIS 2014, pp. 70–75 (2014). doi:10.1109/SRDSW.2014.18

  24. Wang, Y., Yasui, G., Hosokawa, Y., Kawai, Y., Akiyama, T., Sumiya, K.: Twinchat: A twitter and web user interactive chat system. In: CIKM 2014, pp. 2045–2047 (2014). doi:10.1145/2661829.2661844

  25. Wang, Y., Yasui, G., Kawai, Y., Akiyama, T., Sumiya, K., Ishikawa, Y.: Dynamic mapping of dense geo-tweets and web pages based on spatio-temporal analysis. In: SAC 2016, pp. 1170–1173 (2016). doi:10.1145/2851613.2851985

  26. Yamaguchi, Y., Amagasa, T., Kitagawa, H., Ikawa, Y.: Online user location inference exploiting spatiotemporal correlations in social streams. In: CIKM 2014, pp. 1139–1148 (2014). doi:10.1145/2661829.2662039

Download references

Acknowledgments

This work was partially supported by MIC SCOPE (150201013), and JSPS KAKENHI Grant Numbers 26280042, 15K00162, 16H01722, and Grants for Women Researchers of Yamaguchi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, Y., Mohd Pozi, M.S., Yasui, G., Kawai, Y., Sumiya, K., Akiyama, T. (2017). Visualization of Spatio-Temporal Events in Geo-Tagged Social Media. In: Brosset, D., Claramunt, C., Li, X., Wang, T. (eds) Web and Wireless Geographical Information Systems. W2GIS 2017. Lecture Notes in Computer Science(), vol 10181. Springer, Cham. https://doi.org/10.1007/978-3-319-55998-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55998-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55997-1

  • Online ISBN: 978-3-319-55998-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics