[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Artificial Immune Ecosystem: A Bio-Inspired Meta-Algorithm for Boosting Time Series Anomaly Detection with Expert Input

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10199))

Included in the following conference series:

Abstract

One of the challenges in machine learning, especially in the Big Data era, is to obtain labeled data sets. Indeed, the difficulty of labeling large amounts of data had lead to an increasing reliance on unsupervised classifiers, such as deep autoencoders. In this paper, we study the problem of involving a human expert in the training of a classifier instead of using labeled data. We use anomaly detection in network monitoring as a field of application. We demonstrate how using crude, already existing monitoring software as a heuristic to choose which points to label can boost the classification rate with respect to both the monitoring software and the classifier trained on a fully labeled data set, with a very low computational cost. We introduce the Artificial Immune Ecosystem meta-algorithm as a generic framework integrating the expert, the heuristic and the classifier.

The work presented here has been funded by IPLine SAS, by the French ANRT in the frame of CIFRE contract 2015/0079, and by the French Banque Publique d’Investissement (BPI) under program FUI-AAP-19 in the frame of the HuMa project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Personal experience of the author as a software engineer for a Cloud service provider.

References

  1. Silverstein, A.M.: Paul ehrlich, archives and the history of immunology. Nat. Immunol. 6(7), 639–639 (2005)

    Article  Google Scholar 

  2. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of the 1994 IEEE Symposium on Security and Privacy, p. 202. IEEE (1994)

    Google Scholar 

  3. Hofmeyr, S.A., Forrest, S.: An immunological model of distributed detection and its application to computer security. The University of New Mexico (1999)

    Google Scholar 

  4. Aickelin, U., Cayzer, S.: The danger theory and its application to artificial immune systems (2008). arXiv preprint arXiv:0801.3549

  5. Freitas, A.A., Timmis, J.: Revisiting the foundations of artificial immune systems for data mining. IEEE Trans. Evol. Comput. 11(4), 521–540 (2007)

    Article  Google Scholar 

  6. Montechiesi, L., Cocconcelli, M., Rubini, R.: Artificial immune system via euclidean distance minimization for anomaly detection in bearings. Mech. Syst. Signal Process. 76–77, 380–393 (2015)

    Google Scholar 

  7. Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series classification using numerosity reduction. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 1033–1040. ACM (2006)

    Google Scholar 

  8. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Disc. 28(4), 851–881 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bagnall, A., Janacek, G.: A run length transformation for discriminating between auto regressive time series. J. Classif. 31(2), 154–178 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 2–11. ACM (2003)

    Google Scholar 

  11. Wei, L., Kumar, N., Lolla, V.N., Keogh, E.J., Lonardi, S., Ratanamahatana, C.A.: Assumption-free anomaly detection in time series. In: SSDBM 2005, vol. 5, pp. 237–242 (2005)

    Google Scholar 

  12. Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedihardjo, A.P., Chen, C., Frankenstein, S.: Time series anomaly discovery with grammar-based compression. In: EDBT, pp. 481–492 (2015)

    Google Scholar 

  13. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995). doi:10.1007/3-540-59119-2_166

    Chapter  Google Scholar 

  14. Babenko, B., Yang, M.H., Belongie, S.: A family of online boosting algorithms. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1346–1353. IEEE (2009)

    Google Scholar 

  15. Beygelzimer, A., Kale, S., Luo, H.: Optimal and adaptive algorithms for online boosting (2015). arXiv preprint arXiv:1502.02651

  16. Volkova, S.: Data stream mining: A review of learning methods and frameworks (2012)

    Google Scholar 

  17. Chu, F., Zaniolo, C.: Fast and light boosting for adaptive mining of data streams. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 282–292. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24775-3_36

    Chapter  Google Scholar 

  18. Chen, L., Kamel, M.S.: Design of multiple classifier systems for time series data. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS 2005. LNCS, vol. 3541, pp. 216–225. Springer, Heidelberg (2005). doi:10.1007/11494683_22

    Chapter  Google Scholar 

  19. Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014)

    Article  Google Scholar 

  20. Valko, M., Kveton, B., Huang, L., Ting, D.: Online semi-supervised learning on quantized graphs (2012). arXiv preprint arXiv:1203.3522

  21. Zhang, G., Jiang, Z., Davis, L.S.: Online semi-supervised discriminative dictionary learning for sparse representation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 259–273. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37331-2_20

    Chapter  Google Scholar 

  22. Kveton, B., Philipose, M., Valko, M., Huang, L.: Online semi-supervised perception: Real-time learning without explicit feedback. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 15–21. IEEE (2010)

    Google Scholar 

  23. Veeramachaneni, K., Arnaldo, I.: AI2: Training a big data machine to defend. In: 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), April 2016

    Google Scholar 

  24. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(2), 539–550 (2009)

    Article  Google Scholar 

  25. Mi, Y.: Imbalanced classification based on active learning smote. Res. J. Appl. Sci. Eng. Technol. 5, 944–949 (2013)

    Google Scholar 

  26. Akbani, R., Kwek, S., Japkowicz, N.: Applying support vector machines to imbalanced datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30115-8_7

    Chapter  Google Scholar 

  27. Saunier, N., Midenet, S., Grumbach, A.: Stream-based learning through data selection in a road safety application. In: STAIRS 2004, Proceedings of the Second Starting AI Researchers Symposium, vol. 109, pp. 107–117(2004)

    Google Scholar 

  28. Forman, G., Cohen, I.: Learning from little: Comparison of classifiers given little training. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 161–172. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30116-5_17

    Chapter  Google Scholar 

  29. Chinchor, N., Sundheim, B.: MUC-5 evaluation metrics. In: Proceedings of the 5th Conference on Message Understanding, pp. 69–78. Association for Computational Linguistics (1993)

    Google Scholar 

  30. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Guigou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Guigou, F., Collet, P., Parrend, P. (2017). The Artificial Immune Ecosystem: A Bio-Inspired Meta-Algorithm for Boosting Time Series Anomaly Detection with Expert Input. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55849-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55848-6

  • Online ISBN: 978-3-319-55849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics