[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Feature Selection in High Dimensional Data by a Filter-Based Genetic Algorithm

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10199))

Included in the following conference series:

  • 1825 Accesses

Abstract

In classification and clustering problems, feature selection techniques can be used to reduce the dimensionality of the data and increase the performances. However, feature selection is a challenging task, especially when hundred or thousands of features are involved. In this framework, we present a new approach for improving the performance of a filter-based genetic algorithm. The proposed approach consists of two steps: first, the available features are ranked according to a univariate evaluation function; then the search space represented by the first M features in the ranking is searched using a filter-based genetic algorithm for finding feature subsets with a high discriminative power.

Experimental results demonstrated the effectiveness of our approach in dealing with high dimensional data, both in terms of recognition rate and feature number reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the same holds also for the feature-class correlation.

References

  1. Nips 2003 workshop on feature extraction and feature selection challenge (2003). http://clopinet.com/isabelle/Projects/NIPS2003

  2. Bermejo, P., Gámez, J.A., Puerta, J.M.: Improving incremental wrapper-based subset selection via replacement and early stopping. IJPRAI 25(5), 605–625 (2011)

    MathSciNet  Google Scholar 

  3. Cordella, L.P., De Stefano, C., Fontanella, F., Marrocco, C., Scotto di Freca, A.: Combining single class features for improving performance of a two stage classifier. In: 20th International Conference on Pattern Recognition (ICPR 2010), pp. 4352–4355. IEEE Computer Society (2010)

    Google Scholar 

  4. Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(1–4), 131–156 (1997)

    Article  Google Scholar 

  5. De Stefano, C., Fontanella, F., Marrocco, C.: A GA-based feature selection algorithm for remote sensing images. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 285–294. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78761-7_29

    Chapter  Google Scholar 

  6. De Stefano, C., Fontanella, F., Maniaci, M., Scotto di Freca, A.: A method for scribe distinction in medieval manuscripts using page layout features. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011. LNCS, vol. 6978, pp. 393–402. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24085-0_41

    Chapter  Google Scholar 

  7. Gütlein, M., Frank, E., Hall, M., Karwath, A.: Large scale attribute selection using wrappers. In: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2009) (2009)

    Google Scholar 

  8. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  9. Hall, M.A.: Correlation-based feature selection for discrete and numeric class machine learning. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 359–366. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  10. Huang, J., Cai, Y., Xu, X.: A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recogn. Lett. 28(13), 1825–1844 (2007)

    Article  Google Scholar 

  11. Lanzi, P.: Fast feature selection with genetic algorithms: a filter approach. In: IEEE International Conference on Evolutionary Computation, pp. 537–540, April 1997

    Google Scholar 

  12. Lee, J.S., Oh, I.S., Moon, B.R.: Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1424–1437 (2004)

    Article  Google Scholar 

  13. Li, R., Lu, J., Zhang, Y., Zhao, T.: Dynamic adaboost learning with feature selection based on parallel genetic algorithm for image annotation. Knowl. Based Syst. 23(3), 195–201 (2010)

    Article  Google Scholar 

  14. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  15. Liu, H., Setiono, R.: Chi2: Feature selection and discretization of numeric attributes. In: ICTAI, pp. 88–91. IEEE Computer Society, Washington, DC (1995)

    Google Scholar 

  16. Manimala, K., Selvi, K., Ahila, R.: Hybrid soft computing techniques for feature selection and parameter optimization in power quality data mining. Appl. Soft Comput. 11(8), 5485–5497 (2011). http://www.sciencedirect.com/science/article/pii/S1568494611001694

    Article  Google Scholar 

  17. Ochoa, G.: Error thresholds in genetic algorithms. Evol. Comput. 14(2), 157–182 (2006)

    Article  Google Scholar 

  18. Oreski, S., Oreski, G.: Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Syst. Appl. 41(4, Part 2), 2052–2064 (2014)

    Article  Google Scholar 

  19. Spolaôr, N., Lorena, A.C., Lee, H.D.: Multi-objective genetic algorithm evaluation in feature selection. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 462–476. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19893-9_32

    Chapter  Google Scholar 

  20. Tan, F., Fu, X., Zhang, Y., Bourgeois, A.G.: A genetic algorithm-based method for feature subset selection. Soft Comput. 12(2), 111–120 (2007)

    Article  Google Scholar 

  21. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016)

    Article  Google Scholar 

  22. Yusta, S.C.: Different metaheuristic strategies to solve the feature selection problem. Pattern Recogn. Lett. 30(5), 525–534 (2009)

    Article  Google Scholar 

  23. Zhai, Y., Ong, Y.S., Tsang, I.: The emerging “big dimensionality”. IEEE Comput. Intell. Mag. 9(3), 14–26 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fontanella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

De Stefano, C., Fontanella, F., Scotto di Freca, A. (2017). Feature Selection in High Dimensional Data by a Filter-Based Genetic Algorithm. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55849-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55848-6

  • Online ISBN: 978-3-319-55849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics