Abstract
At the core of the most popular version of the Monte Carlo Tree Search (MCTS) algorithm is the UCB1 (Upper Confidence Bound) equation. This equation decides which node to explore next, and therefore shapes the behavior of the search process. If the UCB1 equation is replaced with another equation, the behavior of the MCTS algorithm changes, which might increase its performance on certain problems (and decrease it on others). In this paper, we use genetic programming to evolve replacements to the UCB1 equation targeted at playing individual games in the General Video Game AI (GVGAI) Framework. Each equation is evolved to maximize playing strength in a single game, but is then also tested on all other games in our test set. For every game included in the experiments, we found a UCB replacement that performs significantly better than standard UCB1. Additionally, evolved UCB replacements also tend to improve performance in some GVGAI games for which they are not evolved, showing that improvements generalize across games to clusters of games with similar game mechanics or algorithmic performance. Such an evolved portfolio of UCB variations could be useful for a hyper-heuristic game-playing agent, allowing it to select the most appropriate heuristics for particular games or problems in general.
Similar content being viewed by others
References
Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)
Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)
Baier, H., Winands, M.H.: Monte-Carlo Tree Search and minimax hybrids. In: 2013 IEEE Conference on Computational Intelligence in Games (CIG), pp. 1–8. IEEE (2013)
Browne, C.: Towards MCTS for creative domains. In: Proceedings of the International Conference on Computational Creativity, Mexico City, Mexico, pp. 96–101 (2011)
Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo Tree Search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)
Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)
Cazenave, T.: Evolving Monte Carlo Tree Search Algorithms. Dept. Inf., Univ. Paris 8 (2007)
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, vol. 53. Springer, Heidelberg (2003)
Frydenberg, F., Andersen, K.R., Risi, S., Togelius, J.: Investigating MCTS modifications in general video game playing. In: 2015 IEEE Conference on Computational Intelligence and Games (CIG), pp. 107–113. IEEE (2015)
Jacobsen, E.J., Greve, R., Togelius, J.: Monte Mario: platforming with MCTS. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 293–300. ACM (2014)
Justesen, N., Mahlmann, T., Togelius, J.: Online evolution for multi-action adversarial games. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 590–603. Springer, Cham (2016). doi:10.1007/978-3-319-31204-0_38
Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. AI Mag. 35(3), 48–60 (2014)
Levine, J., Congdon, C.B., Ebner, M., Kendall, G., Lucas, S.M., Miikkulainen, R., Schaul, T., Thompson, T.: General video game playing. Dagstuhl Follow-Ups 6 (2013)
McGuinness, C.: Monte Carlo Tree Search: Analysis and Applications. Ph.D. thesis (2016)
Park, H., Kim, K.J.: MCTS with influence map for general video game playing. In: 2015 IEEE Conference on Computational Intelligence and Games (CIG), pp. 534–535. IEEE (2015)
Perez, D., Samothrakis, S., Lucas, S., Rohlfshagen, P.: Rolling horizon evolution versus tree search for navigation in single-player real-time games. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 351–358. ACM (2013)
Perez, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S., Couëtoux, A., Lee, J., Lim, C.U., Thompson, T.: The 2014 General Video Game Playing Competition (2015)
Perez-Liebana, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S.M.: General Video Game AI: Competition, Challenges and Opportunities (2016)
Pettit, J., Helmbold, D.: Evolutionary learning of policies for MCTS simulations. In: Proceedings of the International Conference on the Foundations of Digital Games, pp. 212–219. ACM (2012)
Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic Programming. Lulu.com, Raleigh (2008)
Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
Rimmel, A., Teytaud, O., Lee, C.S., Yen, S.J., Wang, M.H., Tsai, S.R.: Current frontiers in computer go. IEEE Trans. Comput. Intell. AI Games 2(4), 229–238 (2010)
Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bravi, I., Khalifa, A., Holmgård, C., Togelius, J. (2017). Evolving Game-Specific UCB Alternatives for General Video Game Playing. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-55849-3_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55848-6
Online ISBN: 978-3-319-55849-3
eBook Packages: Computer ScienceComputer Science (R0)