[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evolving Game-Specific UCB Alternatives for General Video Game Playing

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10199))

Included in the following conference series:

Abstract

At the core of the most popular version of the Monte Carlo Tree Search (MCTS) algorithm is the UCB1 (Upper Confidence Bound) equation. This equation decides which node to explore next, and therefore shapes the behavior of the search process. If the UCB1 equation is replaced with another equation, the behavior of the MCTS algorithm changes, which might increase its performance on certain problems (and decrease it on others). In this paper, we use genetic programming to evolve replacements to the UCB1 equation targeted at playing individual games in the General Video Game AI (GVGAI) Framework. Each equation is evolved to maximize playing strength in a single game, but is then also tested on all other games in our test set. For every game included in the experiments, we found a UCB replacement that performs significantly better than standard UCB1. Additionally, evolved UCB replacements also tend to improve performance in some GVGAI games for which they are not evolved, showing that improvements generalize across games to clusters of games with similar game mechanics or algorithmic performance. Such an evolved portfolio of UCB variations could be useful for a hyper-heuristic game-playing agent, allowing it to select the most appropriate heuristics for particular games or problems in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

    Article  MATH  Google Scholar 

  2. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)

    Article  Google Scholar 

  3. Baier, H., Winands, M.H.: Monte-Carlo Tree Search and minimax hybrids. In: 2013 IEEE Conference on Computational Intelligence in Games (CIG), pp. 1–8. IEEE (2013)

    Google Scholar 

  4. Browne, C.: Towards MCTS for creative domains. In: Proceedings of the International Conference on Computational Creativity, Mexico City, Mexico, pp. 96–101 (2011)

    Google Scholar 

  5. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo Tree Search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

    Article  Google Scholar 

  6. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  7. Cazenave, T.: Evolving Monte Carlo Tree Search Algorithms. Dept. Inf., Univ. Paris 8 (2007)

    Google Scholar 

  8. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, vol. 53. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  9. Frydenberg, F., Andersen, K.R., Risi, S., Togelius, J.: Investigating MCTS modifications in general video game playing. In: 2015 IEEE Conference on Computational Intelligence and Games (CIG), pp. 107–113. IEEE (2015)

    Google Scholar 

  10. Jacobsen, E.J., Greve, R., Togelius, J.: Monte Mario: platforming with MCTS. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 293–300. ACM (2014)

    Google Scholar 

  11. Justesen, N., Mahlmann, T., Togelius, J.: Online evolution for multi-action adversarial games. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 590–603. Springer, Cham (2016). doi:10.1007/978-3-319-31204-0_38

    Chapter  Google Scholar 

  12. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. AI Mag. 35(3), 48–60 (2014)

    Article  Google Scholar 

  13. Levine, J., Congdon, C.B., Ebner, M., Kendall, G., Lucas, S.M., Miikkulainen, R., Schaul, T., Thompson, T.: General video game playing. Dagstuhl Follow-Ups 6 (2013)

    Google Scholar 

  14. McGuinness, C.: Monte Carlo Tree Search: Analysis and Applications. Ph.D. thesis (2016)

    Google Scholar 

  15. Park, H., Kim, K.J.: MCTS with influence map for general video game playing. In: 2015 IEEE Conference on Computational Intelligence and Games (CIG), pp. 534–535. IEEE (2015)

    Google Scholar 

  16. Perez, D., Samothrakis, S., Lucas, S., Rohlfshagen, P.: Rolling horizon evolution versus tree search for navigation in single-player real-time games. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 351–358. ACM (2013)

    Google Scholar 

  17. Perez, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S., Couëtoux, A., Lee, J., Lim, C.U., Thompson, T.: The 2014 General Video Game Playing Competition (2015)

    Google Scholar 

  18. Perez-Liebana, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S.M.: General Video Game AI: Competition, Challenges and Opportunities (2016)

    Google Scholar 

  19. Pettit, J., Helmbold, D.: Evolutionary learning of policies for MCTS simulations. In: Proceedings of the International Conference on the Foundations of Digital Games, pp. 212–219. ACM (2012)

    Google Scholar 

  20. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic Programming. Lulu.com, Raleigh (2008)

    Google Scholar 

  21. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  22. Rimmel, A., Teytaud, O., Lee, C.S., Yen, S.J., Wang, M.H., Tsai, S.R.: Current frontiers in computer go. IEEE Trans. Comput. Intell. AI Games 2(4), 229–238 (2010)

    Article  Google Scholar 

  23. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Bravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bravi, I., Khalifa, A., Holmgård, C., Togelius, J. (2017). Evolving Game-Specific UCB Alternatives for General Video Game Playing. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55849-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55848-6

  • Online ISBN: 978-3-319-55849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics