[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Selection of Auxiliary Objectives Using Landscape Features and Offline Learned Classifier

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10197))

  • 954 Accesses

Abstract

In order to increase the performance of an evolutionary algorithm, additional auxiliary optimization objectives may be added. It is hard to predict which auxiliary objectives will be the most efficient at different stages of optimization. Thus, the problem of dynamic selection between auxiliary objectives appears. This paper proposes a new method for efficient selection of auxiliary objectives, which uses fitness landscape information and problem meta-features. An offline learned meta-classifier is used to dynamically predict the most efficient auxiliary objective during the main optimization run performed by an evolutionary algorithm. An empirical evaluation on two benchmark combinatorial optimization problems (Traveling Salesman and Job Shop Scheduling problems) shows that the proposed approach outperforms similar known methods of auxiliary objective selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://bitbucket.org/BASSIN/2017-olhp-tsp-jssp/src.

  2. 2.

    http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95.

  3. 3.

    http://watchmaker.uncommons.org.

  4. 4.

    http://www.cs.waikato.ac.nz/ml/weka.

  5. 5.

    http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.html.

  6. 6.

    http://people.brunel.ac.uk/~mastjjb/jeb/.

References

  1. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Araujo, C.P.S. (eds.) Recent Adv. Intell. Eng. Syst., pp. 161–191. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Picek, S., Jakobovic, D.: From fitness landscape to crossover operator choice. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 815–822. ACM (2014)

    Google Scholar 

  3. Ceberio, J., Calvo, B., Mendiburu, A., Lozano, J.A.: Multi-objectivising the quadratic assignment problem by means of an elementary landscape decomposition. In: Puerta, J.M., Gámez, J.A., Dorronsoro, B., Barrenechea, E., Troncoso, A., Baruque, B., Galar, M. (eds.) CAEPIA 2015. LNCS (LNAI), vol. 9422, pp. 289–300. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24598-0_26

    Chapter  Google Scholar 

  4. Jensen, T.: Helper-objectives: using multi-objective evolutionary algorithms for single-objective optimisation. J. Math. Model. Algorithms 3(4), 323–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buzdalova, A., Buzdalov, M.: Increasing efficiency of evolutionary algorithms by choosing between auxiliary fitness functions with reinforcement learning. In: 2012 11th International Conference on Machine Learning and Applications (ICMLA), vol. 1, pp. 150–155. IEEE (2012)

    Google Scholar 

  6. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-objective problems by multi-objectivization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283. Springer, Heidelberg (2001). doi:10.1007/3-540-44719-9_19

    Chapter  Google Scholar 

  7. Petrova, I., Buzdalova, A., Buzdalov, M.: Improved selection of auxiliary objectives using reinforcement learning in non-stationary environment. In: 2014 13th International Conference on Machine Learning and Applications (ICMLA), pp. 580–583. IEEE (2014)

    Google Scholar 

  8. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  9. Kanda, J., Carvalho, A., Hruschka, E., Soares, C.: Using meta-learning to classify traveling salesman problems. In: 2010 Eleventh Brazilian Symposium on Neural Networks, pp. 73–78. IEEE (2010)

    Google Scholar 

  10. Kanda, J.Y., de Carvalho, A.C., Hruschka, E.R., Soares, C.: Using meta-learning to recommend meta-heuristics for the traveling salesman problem. In: 2011 10th International Conference on Machine Learning and Applications and Workshops (ICMLA), pp. 346–351. IEEE (2011)

    Google Scholar 

  11. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  12. Jähne, M., Li, X., Branke, J.: Evolutionary algorithms and multi-objectivization for the travelling salesman problem. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 595–602. ACM (2009)

    Google Scholar 

  13. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case in study local optimization. Local Search Comb. Optim. 1, 215–310 (1997)

    MATH  Google Scholar 

  14. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  15. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  16. Lochtefeld, D.F., Ciarallo, F.W.: Deterministic helper-objective sequences applied to job-shop scheduling. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 431–438. ACM (2010)

    Google Scholar 

  17. Lochtefeld, D.F., Ciarallo, W.: Helper-objective optimization strategies for the job-shop scheduling problem. Appl. Soft Comput. 11(6), 4161–4174 (2011)

    Article  Google Scholar 

  18. Petrova, I., Buzdalova, A., Buzdalov, M.: Improved helper-objective optimization strategy for job-shop scheduling problem. In: 2013 12th International Conference on Machine Learning and Applications (ICMLA), pp. 374–377, vol 2. IEEE (2013)

    Google Scholar 

  19. Bierwirth, C.: A generalized permutation approach to job shop scheduling with genetic algorithms. Oper. -Res. -Spektrum 17(2–3), 87–92 (1995)

    Article  MATH  Google Scholar 

  20. Giffler, B., Thompson, G.L.: Algorithms for solving production-scheduling problems. Oper. Res. 8(4), 487–503 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  21. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Technical report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Bassin .

Editor information

Editors and Affiliations

A Appendix: TSP and JSSP Instances Lists

A Appendix: TSP and JSSP Instances Lists

TSP Train: att532, bays29, brazil58, ch130, d198, d493, eil101, gil262, gr120, gr202, gr24, gr431, hk48, kroA150, kroB200, kroE100, p654, pa561, pr136, pr264, rat575, rat99, si175, st70, ts225, u574, ulysses22. TSP Cross-validate: a280, att48, bayg29, bays29, berlin52, bier127, brazil58, brg180, burma14, ch130, ch150, d198, d493, dantzig42, eil101, eil51, eil76, fl417, fri26, gil262, gr17, gr21, gr24, gr48, gr96, gr120, gr137, gr202, gr229, gr431, hk48, kroA100, kroA150, kroA200, kroB100, kroB150, kroB200, kroC100, kroD100, kroE100, lin105, lin318, pcb442, pr76, pr107, pr124, pr136, pr144, pr152, pr226, pr264, pr299, pr439, rat195, rat99, rd100, rd400, si175, st70, swiss42, ts225, tsp225, u159, ulysses16, ulysses22.

JSSP Train and Cross-validate: abz5, abz8, ft10, la02, la04, la07, la13, la15, la18, la19, la23, la24, la27, la28, la32, la33, la34, la37, la39, orb01, orb04, orb05, orb08, swv02, swv05, swv06, swv10, swv13, swv18, swv19, yn2, yn3.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bassin, A., Buzdalova, A. (2017). Selection of Auxiliary Objectives Using Landscape Features and Offline Learned Classifier. In: Hu, B., López-Ibáñez, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2017. Lecture Notes in Computer Science(), vol 10197. Springer, Cham. https://doi.org/10.1007/978-3-319-55453-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55453-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55452-5

  • Online ISBN: 978-3-319-55453-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics