[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Implicitly Weighted Robust Classification Applied to Brain Activity Research

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 690))

Abstract

In bioinformatics, regularized linear discriminant analysis is commonly used as a tool for supervised classification problems tailor-made for high-dimensional data with the number of variables exceeding the number of observations. However, its various available versions are too vulnerable to the presence of outlying measurements in the data. In this paper, we exploit principles of robust statistics to propose new versions of regularized linear discriminant analysis suitable for high-dimensional data contaminated by (more or less) severe outliers. The work exploits a regularized version of the minimum weighted covariance determinant estimator, which is one of highly robust estimators of multivariate location and scatter. The performance of the novel classification methods is illustrated on real data sets with a detailed analysis of data from brain activity research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  2. Bühlmann, P., van de Geer, S.: Statistics for High-dimensional Data. Springer, New York (2011)

    Book  MATH  Google Scholar 

  3. Chen, Y., Wiesel, A., Hero, A.O.: Robust shrinkage estimation of high dimensional covariance matrices. IEEE Trans. Sig. Process. 59, 4097–4107 (2011)

    Article  MathSciNet  Google Scholar 

  4. Croux, C., Dehon, C.: Robust linear discriminant analysis using S-estimators. Can. J. Stat. 29, 473–493 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davies, P.: Data Analysis and Approximate Models: Model Choice, Location-Scale, Analysis of Variance, Nonparametric Regression and Image Analysis. Chapman & Hall/CRC, Boca Raton (2014)

    MATH  Google Scholar 

  6. Davies, P.L., Gather, U.: Breakdown and groups. Ann. Stat. 33, 977–1035 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duffau, H.: Brain Mapping: From Neural Basis of Cognition to Surgical Applications. Springer, Vienna (2011)

    Book  Google Scholar 

  8. Dziuda, D.M.: Data Mining for Genomics and Proteomics: Analysis of Gene and Protein Expression Data. Wiley, New York (2010)

    Book  Google Scholar 

  9. Filzmoser, P., Todorov, V.: Review of robust multivariate statistical methods in high dimension. Analytica Chinica Acta 705, 2–14 (2011)

    Article  Google Scholar 

  10. Guo, Y., Hastie, T., Tibshirani, R.: Regularized discriminant analysis and its application in microarrays. Biostatistics 8, 86–100 (2007)

    Article  MATH  Google Scholar 

  11. Han, H., Jiang, X.: Overcome support vector machine diagnosis overfitting. Cancer Inf. 13, 145–148 (2014)

    Article  Google Scholar 

  12. Hansen, P.C.: Rank-deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  14. Hlinka, J., Paluš, M., Vejmelka, M., Mantini, D., Corbetta, M.: Functional connectivity in resting-state fMRI: is linear correlation sufficient? NeuroImage 54, 2218–2225 (2011)

    Article  Google Scholar 

  15. Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  16. Hubert, M., Rousseeuw, P.J., van Aelst, S.: High-breakdown robust multivariate methods. Stat. Sci. 23, 92–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hubert, M., Debruyne, M.: Minimal covariance determinant. Wiley Interdisc. Rev. Comput. Stat. 2, 36–43 (2010)

    Article  Google Scholar 

  18. Jurečková, J., Portnoy, S.: Asymptotics for one-step M-estimators in regression with application to combining efficiency and high breakdown point. Commun. Stat. Theor. Methods 16, 2187–2199 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kalina, J.: Implicitly weighted methods in robust image analysis. J. Math. Imag. Vis. 44, 449–462 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kalina, J., Seidl, L., Zvára, K., Grünfeldová, H., Slovák, D., Zvárová, J.: System for selecting relevant information for decision support. Stud. Health Technol. Inf. 183, 83–87 (2013)

    Google Scholar 

  21. Kalina, J.: Classification analysis methods for high-dimensional genetic data. Biocybern. Biomed. Eng. 34, 10–18 (2014)

    Article  Google Scholar 

  22. Kalina, J., Schlenker, A.: A robust and regularized supervised variable selection. BioMed Res. Int. (2015). Article no. 320385

    Google Scholar 

  23. Kindermans, P.-J., Schreuder, M., Schrauwen, B., Müller, K.-R., Tangermann, M.: True zero-training brain-computer interfacing-an online study. PLoS One 9 (2014). Article no. 102504

    Google Scholar 

  24. Kůrková, V., Sanguineti, M.: Learning with generalization capability by kernel methods of bounded complexity. J. Complex. 21, 350–367 (2005)

    Google Scholar 

  25. Lopuhaä, H.P., Rousseeuw, P.J.: Breakdown points of affine equivariant estimators of multivariate location and covariance matrices. Ann. Stat. 19, 229–248 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Maronna, R.A., Martin, D.R., Yohai, V.J.: Robust Statistics: Theory and Methods. Wiley, New York (2006)

    Book  MATH  Google Scholar 

  27. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005)

    Article  Google Scholar 

  28. Pourahmadi, M.: High-dimensional Covariance Estimation. Wiley, New York (2013)

    Book  MATH  Google Scholar 

  29. Roelant, E., van Aelst, S., Willems, G.: The minimum weighted covariance determinant estimator. Metrika 70, 177–204 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (1987)

    Book  MATH  Google Scholar 

  31. Rousseeuw, P.J., van Driessen, K.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212–223 (1999)

    Article  Google Scholar 

  32. Sreekumar, A., et al.: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009)

    Article  Google Scholar 

  33. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008)

    MATH  Google Scholar 

  34. Tibshirani, R., Narasimhan, B.: Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Stat. Sci. 18, 104–117 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Todorov, V., Filzmoser, P.: An object-oriented framework for robust multivariate analysis. J. Stat. Softw. 32(3), 1–47 (2009)

    Article  Google Scholar 

  36. Tyler, D.E.: A distribution-free M-estimator of multivariate scatter. Ann. Stat. 15, 234–251 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tyler, D.E.: Breakdown properties of the M-estimators of multivariate scatter (2014). http://arxiv.org/pdf/1406.4904v1.pdf

  38. Wager, T.D., Keller, M.C., Lacey, S.C., Jonides, J.: Increased sensitivity in neuroimaging analyses using robust regression. NeuroImage 26, 99–113 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Preliminary results were first presented at the BIOSTEC/BIOINFORMATICS 2016 conference (21–23 February 2016 in Rome), where they were published in the proceedings.

The work was supported by the project Nr. LO1611 with a financial support from the MEYS under the NPU I program. The work of J. Kalina was financially supported by the Neuron Fund for Support of Science. The work of J. Hlinka was supported by the Czech Science Foundation project No. 13-23940S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kalina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kalina, J., Hlinka, J. (2017). Implicitly Weighted Robust Classification Applied to Brain Activity Research. In: Fred, A., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2016. Communications in Computer and Information Science, vol 690. Springer, Cham. https://doi.org/10.1007/978-3-319-54717-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54717-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54716-9

  • Online ISBN: 978-3-319-54717-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics