Abstract
Topology preservation is a crucial property of topological algorithms working on binary pictures. Bertrand introduced the notion of P-simple points on the orthogonal grids, which provides a sufficient condition for topology-preserving reductions. This paper presents both formal and easily visualized characterizations of P-simple points in all the three types of regular 2D grids.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bell, S.B.M., Holroyd, F.C., Mason, D.C.: A digital geometry for hexagonal pixels. Image Vis. Comput. 7, 194–204 (1989)
Bertrand, G.: On \(P\)-simple points. Compte Rendu de l’Académie des Sciences de Paris, Série Math. I(321), 1077–1084 (1995)
Bertrand, G., Couprie, M.: Two-dimensional parallel thinning algorithms based on critical kernels. J. Math. Imaging Vis. 31, 35–56 (2008)
Bertrand, G., Couprie, M.: On parallel thinning algorithms: minimal non-simple Sets, \(P\)-simple points and critical kernels. J. Math. Imaging Vis. 35, 23–35 (2009)
Brimkov, V.E., Barneva, R.P.: Analytical honeycomb geometry for raster and volume graphics. Comput. J. 48, 180–199 (2005)
Gaspar, F.J., Gracia, J.L., Lisbona, F.J., Rodrigo, C.: On geometric multigrid methods for triangular grids using three-coarsening strategy. Appl. Numer. Math. 59, 1693–1708 (2009)
Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 145–179. Elsevier Science, Amsterdam (1996)
Kardos, P., Palágyi, K.: On topology preservation of mixed operators in triangular, square, and hexagonal grids. Discret. Appl. Math., in press. doi:10.1016/j.dam.2015.10.033
Kardos, P., Palágyi, K.: Topology preservation on the triangular grid. Ann. Math. Artif. Intell. 75, 53–68 (2015)
Kardos, P., Palágyi, K.: On topology preservation in triangular, square, and hexagonal grids. In: Proceedings of the 8th International Symposium on Image and Signal Processing and Analysis, ISPA 2013, pp. 782–787 (2013)
Kardos, P., Palágyi, K.: Topology-preserving hexagonal thinning. Int. J. Comput. Math. 90, 1607–1617 (2013)
Kardos, P., Palágyi, K.: On topology preservation for triangular thinning algorithms. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 128–142. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34732-0_10
Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. Int. J. Pattern Recog. Artif. Intell. 9, 813–844 (1995)
Kong, T.Y., Gau, C.-J.: Minimal non-simple sets in 4-dimensional binary images with (8,80)-adjacency. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 318–333. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30503-3_24
Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48, 357–393 (1989)
Marchand-Maillet, S., Sharaiha, Y.M.: Binary Digital Image Processing - A Discrete Approach. Academic Press, Cambridge (2000)
Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach. Advances Pattern Recognition. Springer, Heidelberg (2005)
Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recogn. Lett. 25, 1231–1242 (2004)
Nagy, B., Mir-Mohammad-Sadeghi, H.: Digital disks by weighted distances in the triangular grid. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 385–397. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32360-2_30
Ronse, C.: Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images. Discret. Appl. Math. 21, 67–79 (1988)
Sarkar, A., Biswas, A., Mondal, S., Dutt, M.: Finding shortest triangular path in a digital object. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 206–218. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32360-2_16
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Cambridge (1982)
Wuthrich, C., Stucki, P.: An algorithm comparison between square- and hexagonal-based grids. Graph. Models Image Process. 53, 324–339 (1991)
Acknowledgements
This work was supported by the grant OTKA K112998 of the National Scientific Research Fund.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kardos, P., Palágyi, K. (2017). Unified Characterization of P-Simple Points in Triangular, Square, and Hexagonal Grids. In: Barneva, R., Brimkov, V., Tavares, J. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2016. Lecture Notes in Computer Science(), vol 10149. Springer, Cham. https://doi.org/10.1007/978-3-319-54609-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-54609-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54608-7
Online ISBN: 978-3-319-54609-4
eBook Packages: Computer ScienceComputer Science (R0)