Abstract
A high intensity of online advertising often elicits a negative response from web users. Marketing companies are looking for more sustainable solutions, especially in the area of visual advertising. However, the research efforts related to information spreading processes and viral marketing are focused mainly on the maximization of coverage. This paper presents a sustainable seed selection solution based on mixtures of seeds with different characteristics. The proposed solution makes it possible for the information spreading processes to reach more diverse audiences. Mixture seeding avoids overrepresentation of nodes with similar characteristics, and thus decreases campaign intensity while maintaining acceptable coverage.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bampo, M., Ewing, M.T., Mather, D.R., Stewart, D., Wallace, M.: The effects of the social structure of digital networks on viral marketing performance. Inf. Syst. Res. 19(3), 273–290 (2008)
Bhagat, S., Goyal, A., Lakshmanan, L.V.: Maximizing product adoption in social networks. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 603–612. ACM (2012)
Bible network dataset – KONECT, October 2016
Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1029–1038. ACM (2010)
Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 199–208. ACM (2009)
Dobele, A., Toleman, D., Beverland, M.: Controlled infection! Spreading the brand message through viral marketing. Bus. Horiz. 48(2), 143–149 (2005)
Fan, X., Li, V.O.: The probabilistic maximum coverage problem in social networks. In: Global Telecommunications Conference, 2011 IEEE, pp. 1–5 (2011)
Guimera, R., Danon, L., Díaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68(6), 065103 (2003)
Hamsterster friendships network dataset – KONECT, October 2016
Hinz, O., Skiera, B., Barrot, C., Becker, J.U.: Seeding strategies for viral marketing: an empirical comparison. J. Mark. 75(6), 55–71 (2011)
Jankowski, J., Kazienko, P., Wątróbski, J., Lewandowska, A., Ziemba, P., Zioło, M.: Fuzzy multi-objective modeling of effectiveness and user experience in online advertising. Expert Syst. Appl. 65, 315–331 (2016)
Jankowski, J., Ziemba, P., Wątróbski, J., Kazienko, P.: Towards the tradeoff between online marketing resources exploitation and the user experience with the use of eye tracking. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS (LNAI), vol. 9621, pp. 330–343. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49381-6_32
Jankowski, J., Wątróbski, J., Witkowska, K., Wolski, W.: The use of a fuzzy cognitive maps and eye tracking in exploitation of online advertising resources. In: ICEIS, pp. 467–472 (2016)
Kandhway, K., Kuri, J.: How to run a campaign: optimal control of SIS and SIR information epidemics. Appl. Math. Computat. 231, 79–92 (2014)
Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)
Lawson, J., Willden, C.: Mixture experiments in R using mixexp. J. Stat. Softw. Code Snippets 72(2), 1–20 (2016)
Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discovery Data (ACM TKDD) 1(1), 2 (2007)
Michalski, R., Jankowski, J., Kazienko, P.: Negative effects of incentivised viral campaigns for activity in social networks. In: 2012 Second International Conference on Cloud and Green Computing (CGC), IEEE, pp. 391–398 (2012)
Michalski, R., Kajdanowicz, T., Bródka, P., Kazienko, P.: Seed selection for spread of influence in social networks: temporal vs. static approach. New Gener. Comput. 32(3–4), 213–235 (2014)
Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 29–42. ACM (2007)
Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U.S.A. 98, 404–409 (2001)
Piepel, G.F.: Measuring component effects in constrained mixture experi-ments. Technometrics 24(1), 29–39 (1982)
Scheffé, H.: Experiments with Mixtures. J. Roy. Stat. Soc. B 20, 344–360 (1958)
Stonedahl, F., Rand, W., Wilensky, U.: Evolving viral marketing strategies. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 1195–1202. ACM (2010)
Trusov, M., Bucklin, R.E., Pauwels, K.: Effects of word-of-mouth versus traditional marketing: findings from an internet social networking site. J. Mark. 73(5), 90–102 (2009)
Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1039–1048. ACM (2010)
Acknowledgements
This work was partially supported by the Polish National Science Centre, grant no. 2016/21/B/HS4/01562.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Jankowski, J. (2017). Mixture Seeding for Sustainable Information Spreading in Complex Networks. In: Nguyen, N., Tojo, S., Nguyen, L., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2017. Lecture Notes in Computer Science(), vol 10191. Springer, Cham. https://doi.org/10.1007/978-3-319-54472-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-54472-4_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54471-7
Online ISBN: 978-3-319-54472-4
eBook Packages: Computer ScienceComputer Science (R0)