[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mixture Seeding for Sustainable Information Spreading in Complex Networks

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10191))

Included in the following conference series:

Abstract

A high intensity of online advertising often elicits a negative response from web users. Marketing companies are looking for more sustainable solutions, especially in the area of visual advertising. However, the research efforts related to information spreading processes and viral marketing are focused mainly on the maximization of coverage. This paper presents a sustainable seed selection solution based on mixtures of seeds with different characteristics. The proposed solution makes it possible for the information spreading processes to reach more diverse audiences. Mixture seeding avoids overrepresentation of nodes with similar characteristics, and thus decreases campaign intensity while maintaining acceptable coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bampo, M., Ewing, M.T., Mather, D.R., Stewart, D., Wallace, M.: The effects of the social structure of digital networks on viral marketing performance. Inf. Syst. Res. 19(3), 273–290 (2008)

    Article  Google Scholar 

  2. Bhagat, S., Goyal, A., Lakshmanan, L.V.: Maximizing product adoption in social networks. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 603–612. ACM (2012)

    Google Scholar 

  3. Bible network dataset – KONECT, October 2016

    Google Scholar 

  4. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1029–1038. ACM (2010)

    Google Scholar 

  5. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 199–208. ACM (2009)

    Google Scholar 

  6. Dobele, A., Toleman, D., Beverland, M.: Controlled infection! Spreading the brand message through viral marketing. Bus. Horiz. 48(2), 143–149 (2005)

    Article  Google Scholar 

  7. Fan, X., Li, V.O.: The probabilistic maximum coverage problem in social networks. In: Global Telecommunications Conference, 2011 IEEE, pp. 1–5 (2011)

    Google Scholar 

  8. Guimera, R., Danon, L., Díaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68(6), 065103 (2003)

    Article  Google Scholar 

  9. Hamsterster friendships network dataset – KONECT, October 2016

    Google Scholar 

  10. Hinz, O., Skiera, B., Barrot, C., Becker, J.U.: Seeding strategies for viral marketing: an empirical comparison. J. Mark. 75(6), 55–71 (2011)

    Article  Google Scholar 

  11. Jankowski, J., Kazienko, P., Wątróbski, J., Lewandowska, A., Ziemba, P., Zioło, M.: Fuzzy multi-objective modeling of effectiveness and user experience in online advertising. Expert Syst. Appl. 65, 315–331 (2016)

    Article  Google Scholar 

  12. Jankowski, J., Ziemba, P., Wątróbski, J., Kazienko, P.: Towards the tradeoff between online marketing resources exploitation and the user experience with the use of eye tracking. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS (LNAI), vol. 9621, pp. 330–343. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49381-6_32

    Chapter  Google Scholar 

  13. Jankowski, J., Wątróbski, J., Witkowska, K., Wolski, W.: The use of a fuzzy cognitive maps and eye tracking in exploitation of online advertising resources. In: ICEIS, pp. 467–472 (2016)

    Google Scholar 

  14. Kandhway, K., Kuri, J.: How to run a campaign: optimal control of SIS and SIR information epidemics. Appl. Math. Computat. 231, 79–92 (2014)

    Article  MathSciNet  Google Scholar 

  15. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

    Google Scholar 

  16. Lawson, J., Willden, C.: Mixture experiments in R using mixexp. J. Stat. Softw. Code Snippets 72(2), 1–20 (2016)

    Google Scholar 

  17. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discovery Data (ACM TKDD) 1(1), 2 (2007)

    Article  Google Scholar 

  18. Michalski, R., Jankowski, J., Kazienko, P.: Negative effects of incentivised viral campaigns for activity in social networks. In: 2012 Second International Conference on Cloud and Green Computing (CGC), IEEE, pp. 391–398 (2012)

    Google Scholar 

  19. Michalski, R., Kajdanowicz, T., Bródka, P., Kazienko, P.: Seed selection for spread of influence in social networks: temporal vs. static approach. New Gener. Comput. 32(3–4), 213–235 (2014)

    Article  Google Scholar 

  20. Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 29–42. ACM (2007)

    Google Scholar 

  21. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U.S.A. 98, 404–409 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Piepel, G.F.: Measuring component effects in constrained mixture experi-ments. Technometrics 24(1), 29–39 (1982)

    Article  Google Scholar 

  23. Scheffé, H.: Experiments with Mixtures. J. Roy. Stat. Soc. B 20, 344–360 (1958)

    MathSciNet  MATH  Google Scholar 

  24. Stonedahl, F., Rand, W., Wilensky, U.: Evolving viral marketing strategies. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 1195–1202. ACM (2010)

    Google Scholar 

  25. Trusov, M., Bucklin, R.E., Pauwels, K.: Effects of word-of-mouth versus traditional marketing: findings from an internet social networking site. J. Mark. 73(5), 90–102 (2009)

    Article  Google Scholar 

  26. Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1039–1048. ACM (2010)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Polish National Science Centre, grant no. 2016/21/B/HS4/01562.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Jankowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jankowski, J. (2017). Mixture Seeding for Sustainable Information Spreading in Complex Networks. In: Nguyen, N., Tojo, S., Nguyen, L., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2017. Lecture Notes in Computer Science(), vol 10191. Springer, Cham. https://doi.org/10.1007/978-3-319-54472-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54472-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54471-7

  • Online ISBN: 978-3-319-54472-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics